
THE AUTHOR MAKES NO WARRANTY FOR THE USE OF IFORTH AND ASSUMES NO

RESPONSIBILITY FOR ANY ERRORS WHICH MAY APPEAR IN THIS DOCUMENT OR IN THE

IFORTH PROGRAM. HE DOES NOT MAKE ANY COMMITMENT TO UPDATE THE

INFORMATION IN THIS MANUAL.
PARTS OF THIS MATERIAL COPYRIGHTED BY THE DFW, REPRINTED BY PERMISSION.
MICROSOFT, MS-DOS AND WINDOWS ARE REGISTERED TRADEMARKS OF MICROSOFT

CORPORATION.
©MARCEL HENDRIX 1994, 1996, 2001, 2005

IFORTH REFERENCE MANUAL Page 2─ ─
REFERENCE MANUAL

1. INTRODUCTION... 5

1.1. THIS HANDBOOK ...5
1.2. STARTING UP...5

1.2.1. A word to the uninitiated...6
1.2.2. Forth can be compiled and still be standard..6
1.2.3. A word to the long time file user..6
1.2.4. A word to the user of blocks..6
1.2.5. A word to the Forth-83 user..7
1.2.6. A word to the user of Brodie’s Starting Forth..7
1.2.7. The hardware iForth runs on...7

1.3. CONCEPTS..7
1.4. TYPOGRAPHICAL CONVENTIONS...8

2. INSTALLATION.. 9

2.1. INSTALLATION ON AN MS-DOS SYSTEM..9
2.1.1. Content of the installation diskettes...9
2.1.2. The installation process..9

2.2. INSTALLATION ON A LINUX HOST ... 10
2.2.1. Unpacking..10
2.2.2. Files..11
2.2.3. Graphics and Mouse...11
2.2.4. Audio..11
2.2.5. Shell..12
2.2.6. Signals..12
2.2.7. Terminals..12
2.2.8. I/O permissions...13
2.2.9. Technical note: addressing...13
2.2.10. Panic..13
2.2.11. Preferences...14

2.3. INSTALLATION ON WINDOWS...14
2.3.1. Unpacking..14
2.3.2. Files..15
2.3.3. Graphics and Mouse...15
2.3.4. Audio..15
2.3.5. Shell..15
2.3.6. Signals..15
2.3.7. Terminal...15
2.3.8. I/O permissions...15
2.3.9. Preferences...16

2.4. GENERAL DIRECTIONS...16
2.4.1. Configuration files in general...16

2.5. CUSTOMIZING IFORTH...16
2.6. THE INSTALLED SYSTEM..16

2.6.1. Content of the IFORTH directory..17
2.6.2. The binary files executable by IFORTH...17
2.6.3. The utilities...17
2.6.4. The helpfiles...18
2.6.5. The benchmarks..18
2.6.6. The strict ANS Forth examples..19
2.6.7. Showing off IFORTH: the graphics examples..19
2.6.8. The miscellaneous examples..19
2.6.9. Other files...20

2.7. CONFIGURATION PER PROJECT OR PER USER..20

IFORTH REFERENCE MANUAL Page 3─ ─
3. WORKING WITH IFORTH ... 21

3.1. SOME INTERNALS..21
3.1.1. Processor startup..21
3.1.2. Capabilities of the server..21

3.2. COMMAND LINE OPTIONS...22
3.3. THE EDIT-COMPILE CYCLE...22
3.4. DOING WHAT FORTH CANNOT DO... 22

3.4.1. Escaping to the Operating System...23
3.4.2. Escapes supplied by the server..23

3.5. HOW IFORTH FINDS ITS FILES...23
3.6. MODULARITY ..24
3.7. OLD (FASHIONED) HANDS ARE ON THEIR OWN...24

4. IMPLEMENTATION OVERVIEW.. 26

4.1. GENERAL..26
4.2. THE STACKS..26
4.3. FLOATING POINT ...27
4.4. NUMBERS AND THEIR RANGES..27
4.5. SYSTEM LIMITATIONS ..28

4.5.1. File handling for MS-DOS/Windows/Linux hosts...28
4.5.2. Terminal interaction...28
4.5.3. Terminal interaction for PC hardware..28

4.6. PROGRAMMER CONVENIENCES...29
4.7. INTRODUCING THE ASSEMBLER..30

5. THE LANGUAGE.. 31

5.1. WE ARE NOT TRYING TO TEACH YOU FORTH ...31
5.2. THE WORDS..31

5.2.1. The stack manipulation group...32
5.2.2. The integer and address arithmetic group...32
5.2.3. The integer comparison group...33
5.2.4. Shift and rotate operators... 33
5.2.5. The floating-point arithmetic group..33
5.2.6. The floating-point comparison group..34
5.2.7. Integer and floating constants...34
5.2.8. The conversions..34
5.2.9. Fetch and store...34
5.2.10. The TO-concept as an object-like paradigm..35
5.2.11. Terminal output of strings... 35
5.2.12. Formatting and terminal output of integers...35
5.2.13. Formatting floating-point numbers..36
5.2.14. Parsing the input stream...37
5.2.15. Compiling numbers, chars and strings..37
5.2.16. Building data structures..38
5.2.17. Local data structures..38
5.2.18. Program structures...38
5.2.19. Conditional compilation..40
5.2.20. Word-lists (vocabularies)..40
5.2.21. Colon definitions and execution tokens...40
5.2.22. Smart data structures..41
5.2.23. Terminal I/O...41
5.2.24. Strings and characters..42
5.2.25. File handling and input/output..42
5.2.26. Memory management..43
5.2.27. Vectored execution..43

IFORTH REFERENCE MANUAL Page 4─ ─
5.2.28. IFORTH sets...43
5.2.29. Programmer conveniences..43
5.2.30. Miscellaneous...43
5.2.31. Time and date...43
5.2.32. Trespassing into the BLOCK world...44
5.2.33. The obsolescent words...45

5.3. THE TO-OBJECTS..45
5.3.1. General properties of TO-objects..46
5.3.2. The VALUE object..47
5.3.3. The DVALUE object..47
5.3.4. The FVALUE object..47
5.3.5. The LOCAL object..47
5.3.6. The FLOCAL object..48
5.3.7. The REGISTER object...48

5.4. THE SYSTEM WORDS..49
5.4.1. System vectors...49
5.4.2. Workspace registers and stack pointers...50

5.5. INTERNALS OF THE TO-OBJECT MECHANISM...50
5.5.1. Writing your own server..51

6. NORMAL CUSTOMIZATION ... 52

6.1. BUILDING A FATTER FORTH SYSTEM...52
6.2. BUILDING A LEANER FORTH SYSTEM...52
6.3. TURNKEY SYSTEMS...52
6.4. LITTLE IS IMPOSSIBLE... ...52

7. PROGRAMMING IN ASSEMBLER .. 53

7.1. THE LOW LEVEL PROGRAMMING MODEL..53
7.2. CUSTOMIZING ASSEMBLY...55
7.3. HOW TO LEARN ABOUT THE HARDWARE..55
7.4. INVOKING THE ASSEMBLER..55
7.5. THE MEMORY MODEL ..56
7.6. THE FORTH ASSEMBLER INTERFACE..56

7.6.1. Calling convention..56
7.6.2. Using the workspace from assembly..56

7.7. MACRO’S AND MACRO GROUPS...56
7.7.1. Comparison macro’s...57
7.7.2. Mobility macro’s...57
7.7.3. Macro groups for structured program control...58

IFORTH REFERENCE MANUAL Page 5─ ─
1. Introduction
IFORTH stands for Forth on Intel-compatible processors.

The ANS Forth standard allows for a Forth that does not assume an underlying
model of implementation. IFORTH uses this liberty to compile directly to
optimized machine code. This Forth has a cell width of 32-bits and directly
addresses all of its 4 Gigabyte address space.

The ANS Forth standard, like the Forth-83 standard, distinguishes between core
words and extensions. In IFORTH all of extensions are present. This means any
standard-complying program will run, irrespective of the extensions it uses.
Nearly all words are available directly, the freedom allowed by the standard to
supply extensions in source form only is used sparingly.

IFORTH does not run on 16-bit or 8-bit Intel processors. The advantage of the
large unsegmented address space would be lost on them. IFORTH programs are
portable to the transputer platform (tForth on T8xx and T4xx) and to some DSP
processors (dspForth on the TMS320C30), when care is taken with hardware-
specific issues.

1.1. This handbook
This handbook is intended to be a comprehensive documentation of the IFORTH

system; not all of it is needed to get started. IFORTH is a standard system, so you
might also want to read the ANS Forth documentation as issued by the ANSI
(available electronically in ASCII and HTML formats).

After reading the introductory chapter you will need to go through the
installation process as described in chapter 2. Chapter 3 contains some practical
guidance for using the system.

The chapters 4 and 5 are, in fact, the implementation-dependent additions to
ANS Forth. Chapter 4 describes all the implementation detail that is required by
the standard. Chapter 5 is a summary of the available words, grouped logically
rather than lexicographically. This includes all the standard words. Also words
suggested by the standard (notably “programmer conveniences”) show up here,
but not the system-dependent assembly language words. Note that information
here is sometimes duplicated in the glossary.

The three following chapters will show you the words to adapt the system to
your wishes, make a turn key application, and do some assembler programming.

The glossary, Forth’s ultimate reference, is in a separate section. It summarizes
the words that are present in this Forth. Each word is listed with the extension
(if any) to which it belongs. This will prove valuable if you want to write
programs that have to be ported to a less fully equipped Forth.

The IFORTH environment and the server protocol are discussed in appendix I and
II.

1.2. Starting up
The ANS Forth standard is comparatively new. I have tried to identify the tricky
problems and discuss them below.

IFORTH REFERENCE MANUAL Page 6─ ─
1.2.1. A word to the uninitiated
As I have said before, this is a reference manual. It contains little tutorial
material, and you can not learn Forth from it. Alongside it you will need the
ANS Forth standard.

To get started in Forth I recommend reading Starting Forth, see appendix III, or
search your CDROM (/dfwforth/examples/StartingForth/) for the electronic
version. You should be aware that this classic book is not fully compatible with
ANS Forth, and used to be somewhat difficult to find

1
. Forth: The New Model

fixes both problems but is silent about the important locals, files and floating-
point word sets.

1.2.2. Forth can be compiled and still be standard
For those people still thinking of Forth as a threaded language it may come as a
surprise that IFORTH compiles to machine code. By carefully defining the effect
of compiling words the ANS Forth committee has succeeded in portability across
interpreted and compiled systems. However, there is a small problem that you
have to be aware of. The traditional notion of compilation as “comma’ing into the
dictionary” has become invalid. For example: the word ' will return a so-called
execution token and its use is restricted—but still sufficient for the majority of
uses it has been put to. All of this is documented meticulously in the standard.

1.2.3. A word to the long time file user
There are numerous Forth-ers who use files exclusively. They probably are
pleased to see that files have made it into the standard. But the ANS standard
does not simply trade blocks for files. It still requires blocks. That is, if a file
word set is supplied it is mandatory to also supply the block word set. A slight
disadvantage is that common words like LOAD are thus reserved for blocks. The
word INCLUDE and derivations thereof are used to “load” files. All words that
apply to files end in FILE e.g. READ-FILE . Some of the words containing
FILE are in the section about blocks because they are only concerned with files
containing blocks. These can safely be ignored by file-users. Note that blocks
need not be mapped within files. A standard system could use a single block
system that directly maps onto the sectors of a hard disk.

1.2.4. A word to the user of blocks
Religious wars… So I won’t tell a block user to switch. I personally prefer files
over blocks because inserting comments and adding extra indentation to existing
definitions is much easier. In many systems, amongst them IFORTH, you can use
your favorite text editor from within Forth. Porting sources to other Forth
systems is also easier, especially if these are running under a host operating
system.

There is no built-in block editor in the EDITOR word list. A block editor is
available in the file editor.frt in the examples/blocks directory. Load it manually.

1 It used to be available through mail order from FIG, USA. Try MPE in the UK, or Amazon.com in
the "used books" section.

IFORTH REFERENCE MANUAL Page 7─ ─
1.2.5. A word to the Forth-83 user
ANS Forth is largely based on the Forth-83 standard. Once you have studied the
notes in the ANS Forth standard about the differences with Forth-83 you are
ready to go.

One of the most notable differences is the introduction of >NUMBER ACCEPT
POSTPONE to replace CONVERT EXPECT and the duo COMPILE
[COMPILE] respectively. They clean up ambiguities and unpleasant properties
of the old words.

The word NOT is replaced by 0= or INVERT , depending on whether it inverts a
logic result or is intended to invert all the bits of a cell on the stack.

Related to portability towards 32-bit systems, cell-counting and alignment words
have been introduced.

Furthermore some longstanding practices have been honored, such as
RECURSE and EVALUATE .

The controversy between rounding towards zero or towards minus infinity has
been settled by providing both: FM/MOD SM/REM .

The philosophy of looping has not changed. It is still possible to do a wrap
around loop by providing two equal limits. The usefulness of this in a 32-bit
system is, of course, questionable.

1.2.6. A word to the user of Brodie’s Starting Forth
The well known introductory text Starting Forth of Leo Brodie is based on
polyFORTH or Forth-83 depending on whether you have the first or second
edition. It still can be used in combination with IFORTH as long as you take heed
that ' and CREATE ... DOES> behave differently.

1.2.7. The hardware iForth runs on
IFORTH is written modularly. All hardware dependent parts are isolated and the
adaptation to other hardware is comparatively straightforward.

For special wishes with regards the MS-DOS, Linux, or Windows products you
have to contact the implementor. The UNIX version comes with “C” source code
for a server program. This server is able to absorb most common implementation
details.

1.3. Concepts
Most of the concepts and names used by the ANSI document are taken for
granted. I will draw attention to a few that have been changed or may cause
confusion.

A “character string” is described by an address and a count on the stack. This is
the preferred method of the standard to pass strings around. Note that for
parsing etc. it is not necessary to copy characters in order to return a string.

A “counted string” is represented by a single address, where the first character
represents a count.

An “execution token” is a single cell on the stack that represents a word in the

IFORTH REFERENCE MANUAL Page 8─ ─
form required by COMPILE, and EXECUTE . The idea of a “code field address”
is gone. An execution token need not be an address and its use is restricted in
ways detailed in the standard.

The space addressable by programs is called “data space”. The HERE area,
parameter fields of words and tables created by , (comma) are all allocated in
data space.

Executable code is put in the “code space”. A standard program may not assume
that the code space is addressable.

When working with IFORTH you will discover that it will almost always find the
files it needs. The word “findable” will be used to denote that a file can be found,
the exact way of which is explained in the installation chapter.

The “memory manager” is the part of IFORTH that implements the optional
memory allocation word set of ANS Forth. This word set allows to free and
allocate memory in random order, unlike ALLOT.

A “module” is a word set of IFORTH that has a REVISION word. It can be
forgotten as a whole, and features facilities like information hiding and its own
help. It is always located in a separate file. All utilities are in the form of
modules. A “module name” is the same as its REVISION word, and is used to
identify it in glossaries and such.

The “iforth directory” plays an important role in finding system files, utilities
and documentation. Normally it is the directory where you installed IFORTH.

A “dictionary entry address” is the principal address of a dictionary word. It can
be used to find such data as the name field, data field and execution token.

1.4. Typographical conventions

All sections are numbered in a leveled hierarchy. Headers are bold and in
successive smaller fonts for the lower levels. A general problem with
documenting Forth is how to make Forth words stand out in the context. This is
more severe than in other languages because words such as , and ; can all be
language elements. As you see from this example, I have adapted the convention
from the ANS Forth documents to print those words in a bold font. Also a closing
full stop, brackets or other punctuation are never concatenated with a Forth
word. This produces silly sentences in a number of occasions.

IFORTH REFERENCE MANUAL Page 9─ ─
2. Installation

2.1. Installation on an MS-DOS system
The installation is done under program control and should proceed smoothly.
Just take care to follow the instructions.

After the installation you will have an IFORTH directory on hard disk, which in
general would be added to your PATH so that the executable files can be found
without having to change the current directory. Note that the dos-extender,
GO32, additionally needs two environment variables to set it up properly. In
order to be able to use the include and help files the DOS append command is
recommended.

Once this is set up you may develop in any directory you wish. If you do not add
the IFORTH directory to your PATH you must specify the whole installation
directory path when starting IFORTH. The environment variables must be set up
in your autoexec.bat or manually before starting IFORTH. The append command
is optional.

2.1.1. Content of the installation diskettes
Apart from an install.bat and some auxiliary files, the installation diskettes
contain archive files that each hold a directory you are about to create on your
hard disk. The tree structure generated by the install command is important for
the retrieval of files and must be preserved. The examples directory is an
exception: it may be left out. The bin directory contains MS-DOS executables,
the IFORTH binary, and driver files and executables for the DJGPP DOS-
extender. The doc directory contains documentation files of which the online
help file is the most important one. The include directory contains IFORTH source
code of tools that you can include in your programs or use when developing. The
examples directory contains source code for numerous programs. Run them to get
an idea of the power of IFORTH or use them as a starting point for your own
development. This directory is split into several sub-directories, grouping the
example programs by subject.

2.1.2. The installation process
The result of the installation process will be a new directory on your hard disk.
The space needed for a complete IFORTH is about 14 megabytes. For the
installation you need to:

Decide upon a name for the sub-directory on your hard disk, make sure it
does not already exist (we’ll assume it is c:\iforth from now on). You may
add this directory to your PATH. Anyhow, if you run the IFORTH that is
present in this directory, it can find all the files it needs by virtue of the
directory tree conventions, two additional environment variables, and the
append command. I refrained from having the installation procedure modify
your autoexec.bat file automatically for this.

Insert the IFORTH floppy into a floppy drive connected to your system, change
the current drive to this drive (say a:) and type: INSTALL a: c:\iforth

(assuming you want to install in c:\iforth). Don’t forget the “a:”.

IFORTH REFERENCE MANUAL Page 10─ ─
Wait until the installation is finished. Edit the automatically generated
ith.bat file for the proper path names and options. If there were no errors in
the installation process you are now ready to use IFORTH.

About ith.bat. Typically the file will look like shown below, when you specify i:\
as the installation directory: (The line numbers between parens are for reference
only).

(1) @echo off
(2) set GO32TMP=i:\tmp
(3) set GO32=driver i:\bin\TRIDENTX.grd gw 640 gh 480

(4) append i:\;i:\doc;i:\include;i:\include\fonts ;

(5) i:\bin\i3fe2m__ include iforth.prf %1 %2 %3 % 4 %5 %6 %7 %8

Line 2 points to a directory where the dos-extender can keep its swap file. Line 3
is optional, but if left out the dos-extender will not use the high resolution modes
of your SVGA card (if you have one). Instead of TRIDENTX.grd use the name
corresponding to your SVGA card (If that driver is available in the bin

directory). Line 4 points IFORTH to its include , font and doc directories.
Without this, the word NEEDS, HELP and IHELP will not work and using the
function keys will generate “file not found” errors.

Line 5 starts IFORTH. The first command IFORTH executes is to INCLUDE
iforth.prf (command line parameters are explicitly allowed).

2.2. Installation on a Linux host

2.2.1. Unpacking
IFORTH comes on a CDROM, combined with the DOS (./dfwforth/iforth) and
Windows (./dfwforth/ifwinnt) versions. You can place it anywhere you want, as
long as the directory structure is kept intact. The final tree will look like this:

.-----iflinux
| |-----bin

 | `-----doc
 [..]dfwforth--+-----include-----fonts
 |-----dataf
 |-----meta
 `-----examples----... (many directories)

iForths for other platforms are added to above tree as follows:

:
|-----iforth
| |-----bin

 : `-----doc

For the example shown, all IFORTHs use the same include, dataf, meta and
examples directories. A slight nuisance is the different lf/cr+lf convention (your
editor might be able to hide this for you, IFORTH can read either file format).

The Forth OPEN-FILE routine is aware of the above tree structure. If you

IFORTH REFERENCE MANUAL Page 11─ ─
change it the NEEDS construct fails. You can add your own paths in iforth.c’s
main().

IFORTH is not written in C. It is generated by a metacompiler which is itself
written in IFORTH and in (Forth) assembler. This metacompiler and assembler
know nothing about the format of Linux object files. Luckily Linux internals are
such that binaries assembled for absolute addresses will work (when the used
absolute address is chosen correctly). The C-server loads the iforth.img binary in
an array, then jumps to the start address of this array (for this to work, code and
data space of the unix must overlap, which is the case for Linux). From the
above description it is easy to see that once IFORTH is up and running, it can
extend itself in any number of ways and simply save the modified memory image
back to disk to make the changes permanent (See SAVE-SYSTEM).

The C-server program iforth.c must be compiled by the superuser. Check out the
options in the makefile, change them when you don’t have the needed libraries,
then type make. Afterwards the binary must be made accessible to all users (the
supplied makefile does this by default).

There might be a number of warnings (“initialization from incompatible pointer
type”). When not compiled by the superuser IFORTH still works, but things like
line editing will be a pain. Also, some of the more useful demos and utilities may
have to be rewritten.

Export a shell variable called IFORTH that points to the start of the IFORTH

directory tree, like this:

 export IFORTH=/home/gonzo/dfwforth

Now you can start IFORTH from any directory you want; the include and doc files
will be found without the need for an explicit pathname (See OPEN-FILE
above).

2.2.2. Files
For compatibility reasons you may want to use only lower case, and limit
yourself to the 8+3 filename format.

2.2.3. Graphics and Mouse
IFORTH comes with a driver for the Linux vga, vgagl and vgamouse libraries.
(Unfortunately these have been made obsolete with recent Linuxes. There is a
driver for X too, however.) The one, two and three bytes per pixel modes are
supported. Mouse and graphics work without any additional installation when
the /etc/vga/libvga.config file is correct2. In graphics mode you can still use the
normal commandline editor PROCED. Try the S” name” SET-FONT command
(or execute words like MODERN16 etc. after executing GRAPHICS).

2.2.4. Audio
IFORTH will drive MIDI interfaces directly, without using system libraries,

2 I had to export SVGA_MOUSE_OVERRIDE=1 in order to have the driver really use the mouse type
entry in libvga.config (I have a 3-button mouse but could only use 2 of them). In extreme cases you
may need to recompile the svga package.

IFORTH REFERENCE MANUAL Page 12─ ─
because only a simple serial byte store-fetch is needed.

Audio-CDs can be played and even sampled.

In principle, all soundcards are supported.

2.2.5. Shell
IFORTH calls the standard /bin/sh shell when you type 0. SYSTEM or SHELL .
Normally /bin/sh is a link to your preferred login shell. Other commands (in
os.prf) are also accessed through /bin/sh.

2.2.6. Signals
The ISERVER catches most signals and tries to do something intelligent with
them:

• SIGFPE (arithmetic error, e.g. division by zero),
• SIGSEGV (illegal memory access)
• SIGINT (terminal interrupt character ^C)

These write a message and perform the equivalent of ABORT .

SIGPIPE (write to pipe with no readers, see /include/pipes.frt)

Ignored as this is a common signal when using less etc.

• SIGWINCH (terminal window size changed)
Caught and used to update C/L and L/SCR .

• SIGCONT (continue stopped process)
Caught and used to reset the terminal to IFORTH’s requirements, as the
BASH job control doesn’t do this automatically. By the way, you can interrupt
IFORTH with ^Z and then continue later on with fg %<jobnumber>.

• SIGQUIT (terminal quit character ^\)
IFORTH terminates when ^\ is typed.

• SIGTSTP (terminal stop character ^Z)
IFORTH yields to the shell. Restart with the proper shell command (fg %1 for
bash).

• SIGALRM (time out)
This one is actually used by the timer read and write functions.

• SIGUSR1 (user signals)
• SIGUSR2

SVGALIB uses these.

Other signals print a message and exit or ignore the signal. There is no
guarantee that all Linux signals are caught. For instance, SIGINFO and
SIGEMT don’t exist.

2.2.7. Terminals
The relevant key and control strings are provided by termcap. Ncurses (i.e
terminfo) is very large (200,000 bytes) and didn’t work better than termcap,
therefore I do not use it anymore.

The type-ahead buffer and ESC-sequence recognizer are organized such that full

IFORTH REFERENCE MANUAL Page 13─ ─
terminal screens can be cut and pasted into IFORTH (using the mouse).

You should make sure that auto-wraparound is enabled for Xterms. If not,
PROCED, IFORTH‘s command line editor, will behave strangely. (Open an
Xterminal with the -aw option. Check the initialization file of your X-window
manager, e.g. /etc/X11/fvwm/system.fvwm).

iForth accesses virtual console screen memory through the /dev/vcs0 device. It
is possible that this device does not exist. You can create it using the following
script (see also the makescrn script):

#!/bin/sh

Enables iForth to read/write the screen memory of the current

virtual console.

Used by the VSAVE VRESTORE VFREE @AT and !AT word s.

Must be done as root.

mknod -m 644 /dev/vcs0 c 7 0;
mknod -m 644 /dev/vcsa0 c 7 128;

chown root.tty /dev/vcs0

2.2.8. I/O permissions
Because IFORTH allows its users I/O-port access it can become a Trojan horse.

When iForth.c is not compiled by the superuser and/or when no chmod +s iforth

is done, the OS will not grant I/O permissions. In this case some electives and
programs won’t work, but all kernel words are okay.

2.2.9. Technical note: addressing
Linux 1.2.14 or higher works such that the load address of iforth[] is always
the same. So compile the server and run it, get the start address of iforth[]

and metacompile IFORTH for the address found (or ask for a relocated binary
when you don’t have source).

Please note! It is neither necessary nor wanted to put IFORTH at the start of
iforth[] (See below).

The offset at which the server stuffs the *.img file in the array is purposefully
chosen much too high. In this way additional code can be added to the iServer
without needing a relocated IFORTH. The disadvantage is that some memory is
wasted.

2.2.10. Panic
Because IFORTH turns off terminal echoing, things are not so nice when you
crash directly to the OS, bypassing the iServer atexit procedures. In this case you
are forced to “type blind”, and may even have to switch to a different virtual
console. For these situations I have added the following aliases to my shell
(bash) :

alias xe=’stty sane’
alias xt=’stm 100x40’

I must admit to not having used xt for a long, long time, but xe is useful with

IFORTH REFERENCE MANUAL Page 14─ ─
the SVGALIB that came with pre-2.0.0 Linuxes.

2.2.11. Preferences
Check the *.prf files in the ./include directory, you will want to change them.

2.3. Installation on Windows

2.3.1. Unpacking
The IFORTH for Windows is closely modeled after the Linux version. It is
commandline oriented, not GUI-based. Although it is a so-called console
application, mouse-based copy and paste are supported. There is built-in support
for the clipboard and for printing graphics and text. The main difference
between Windows and Linux is that no server source code needs to be included
(The Windows C-development system for IFORTH is about 5 times as expensive
as IFORTH itself).

IFORTH comes on CDROM. You have to manually set two environment variables:
My Computer�Control Panel�System�Environment, IFORTH = c:\dfwforth
and IFORTHBIN = C:\dfwforth\ifwinnt\bin\iforth.img .

It is recommended to put a shortcut to IFORTH on the desktop, setup to start
IFORTH in a 120x30 console with a 120x2500 screenbuffer. Enable QuickEdit.

You can place IFORTH anywhere you want, as long as the directory structure is
kept intact. The final tree will look like this:

.-----ifwinnt
| |-----bin

 | `-----doc
 [..]dfwforth--+-----include-----fonts
 |-----dataf
 |-----meta
 `-----examples----... (many directories)

iForths for other platforms are added to above tree as follows:

:
|-----iflinux
| |-----bin

 : `-----doc

For the example shown, all IFORTH‘s use the same include, dataf, meta and
examples directories.

The Forth OPEN-FILE routine is aware of the above tree structure. If you
change it the NEEDS construct fails.

Just like in the Linux case, IFORTH for Windows is generated by a metacompiler
which is itself written in IFORTH and in (Forth) assembler. This metacompiler
and assembler know nothing about the format of Windows object files. Windows
internals are such that binaries assembled for absolute addresses will work
when the used absolute address is chosen correctly. The C-server loads the

IFORTH REFERENCE MANUAL Page 15─ ─
iforth.img binary in an array, then jumps to the start address of this array. Once
IFORTH is up and running it can extend itself in any number of ways and simply
save the modified memory image back to disk to make the changes permanent
(See SAVE-SYSTEM).

When the environment variable IFORTH is defined as described above, IFORTH

can be started from any directory; the include and doc files will be found without
the need for an explicit pathname (See OPEN-FILE above).

2.3.2. Files
For compatibility reasons (with plain DOS) you may want to use only lower case,
and limit yourself to the 8+3 filename format.

2.3.3. Graphics and Mouse
IFORTH automatically makes use of the Windows graphics libraries, assuming a
four byte per pixel mode. Graphics are output to an additional window. There
are three modes: text, graphics with text going to the console, and graphics with
text going to the graphics console (default when the graphics console is open). In
full graphics mode you can still use the normal commandline editor PROCED.
Neither the console nor the graphics window have a conventional message loop.
One result is that it is not necessary for the graphics window to have the focus in
order to process keystrokes. A big drawback is that the graphics window will not
redraw automatically when it is overwritten by another application’s output.
IFORTH can test when its graphic window is contaminated, but never redraws
the screen automatically.

2.3.4. Audio
IFORTH uses the WIN32 MIDI and PCM libraries. It is possible to use up to four
sequencer and two wave devices at the same time.

Audio-CD’s can be played and sampled using the MCI library.

2.3.5. Shell
IFORTH calls the standard cmd shell when you type 0. SYSTEM or SHELL .
Most commands in os.prf are accessed through cmd.

2.3.6. Signals
The ISERVER catches most signals and tries to do something intelligent with
them. See the Linux implementation in paragraph 2.2.6.

2.3.7. Terminal
The relevant key and control strings are provided and work for international
keyboard layouts.

The type-ahead buffer is organized such that full terminal screens can be cut
and pasted into IFORTH (using the mouse or the clipboard). When PROCED is
active <TAB> provides a history mechanism, <^V> inserts clipboard text and
<PgDn> completes filenames.

2.3.8. I/O permissions
On a correctly configured Windows system the IFORTH I/O-port access words do

IFORTH REFERENCE MANUAL Page 16─ ─
nothing. Free-ware device drivers are available for NT to “unlock” ranges of I/O
addresses, see the ifwinnt directory.

2.3.9. Preferences
Check the *.prf files in the ./include directory, you will want to change them.

2.4. General directions

2.4.1. Configuration files in general
After installation, the iforth directory will contain a batch file ith.bat that is to
be executed whenever you want to run IFORTH. ith.bat will configure the dos-
extender and start IFORTH in such a way that it includes iforth.prf by default.
(With Linux the shell command file is called ith, under Windows you have a
shortcut to iserver.exe as recommended above. There is no need to start
“extender” programs now, but iforth.prf is still passed as the first argument).
The file iforth.prf contains IFORTH commands that are automatically executed
whenever IFORTH is started. I recommend to not place source code in iforth.prf.
Instead, place the source code in the include directory and INCLUDE the file.
The way proced.frt is handled may serve as an example.

2.5. Customizing IFORTH
IFORTH can be customized by walking through the .prf files in both the iforth

directory and the include directory, and disabling and enabling features as you
go, guided by the description of the features present in the files. The settings
such as given upon installation are appropriate for development, but require a
comparatively large amount of extra space. You must expect to go back to this
procedure as you learn more of IFORTH and discover possibilities you did not
appreciate in the beginning.

Unless you are using block files, you may want to install your favorite text file
editor before anything else. This is done by changing the file os.prf. Just replace
the “editor” command by the filename of your favorite editor.

The commands you will need most are already present, but I am sure that you
will want to add some more. Be warned that some of the more sophisticated tools
assume that the “iforth directory” is in your path. In particular this applies to
the facility in os.frt to start up programs using function keys.

2.6. The installed system
In this section I will describe the installed system in somewhat more detail. It is
split in sections concerning the contents of the iforth directory itself and of sub-
directories containing the binary files and the source for some of the utilities.

The examples are numerous, hence they are split over several directories. Their
description is intended as an overview. You will find many more examples than
are described here. When I think an example is interesting and sufficiently self-
contained and documented, it may get added even after the current manual is
completed.

You are entitled to incorporate sources partly or wholly into your programs,

IFORTH REFERENCE MANUAL Page 17─ ─
however you yourself are responsible for the applicability thereof and the
correctness of the resulting program.

2.6.1. Content of the IFORTH directory
The IFORTH directory contains the batch file ith.bat (or the shell script ith, or the
shortcut to iserver.exe) that allows you to run IFORTH. It also contains the
configuration file iforth.prf that is mentioned above.

2.6.2. The binary files executable by IFORTH
The binary system files all reside in the bin subdirectory. For Linux and
Windows it is simple, there is only one binary (double precision floating-point)
and there are no options.

Under MS-DOS the files i3__.exe contain the executable IFORTH system for the
386/486/Pentium with native floating-point arithmetic (‘__’ can be ‘fe’, ‘fd’ or ‘fs’
or ‘’). The binary i3.exe doesn’t use floating point (meant for i386 systems
without a co-processor, not on the distribution disks but available on request).

MS-DOS executable IFORTH systems have a filename constructed of:

• the letter ‘i’;
• 1 character identifying the type of processor this system is intended to run

on: 3 for ‘386 type processors, 4 for ‘486 type, 5 for Pentium type.
• 1 character identifying the type of floating-point support present in the

system: e for emulated floating-point, f for native floating-point or ‘_’ for
no floating-point at all.

• 1 character identifying the precision of the floating-point numbers: s for
IEEE single precision floating-point numbers, d for IEEE double
precision, e for IEEE extended precision floating-point numbers. The
character is an ‘_’ when there is no floating-point support.

• 4 ‘_’ characters are added as placeholders for possible future configuration
switches; 2 of these are used by iForth to indicate how much dynamic
memory will be maximally used (‘1M’, ‘2M’, ‘5M’, ‘8M’ etc, see note 2.)

• The file extension .exe .

Note1: As in practice everybody seems to use i3fe.exe, I have decided to save space
on the distribution disks and leave out the other possibilities. Mail the
author if you still want them (the single precision float version is about 10%
faster than i3fe.exe)

Note2: In addition to the co-processor option, we also have to deal with memory
size. Because of technical problems with GO32 I need to specify the room
available to ALLOCATE at compile time as 100 Kbytes. In iforth.prf this is
then changed to several MBytes.

2.6.3. The utilities
A number of useful utilities are present in the include subdirectory of the
iforth directory. Some of these utilities are already included during startup by
the file iforth.prf, as explained in earlier sections of this chapter. Other ones you
will find yourself incorporating in projects.

IFORTH REFERENCE MANUAL Page 18─ ─
The file miscutil.frt contains miscellaneous utilities. It is used by almost all of
the other utilities and contains many goodies that may be useful in general
Forth programming.

The file terminal.frt provides functions to control specific parts of your display.

The file proced.frt contains a command line editor à la ced.com or bash. This is a
utility that you will typically include in your iforth.prf. It features command
history. This means that you can recall previous commands with the “up arrow”
and “down arrow” keys and edit them before issuing them again. The TAB key
completes a partially typed line to the best matching line in the history buffer (it
also substitutes files like a bash user might expect, try the PgDn key). With ^V
the contents of the clipboard are inserted on the command line. ESC clears the
line.

For heavy-duty floating-point code use the FSL matrix words from fsl_util.frt.

The file backtrac.frt can be useful with difficult debugging problems. It prints a
stack trace, i.e. an overview of the calls via which you have arrived at the
current position. Some people swear by it.

The file see.frt contains a source code viewer, such as specified in the ANS Forth
SEE command. Because of the space required for this definition it is delivered in
source form.

The file graphics.frt contains (not so-) basic facilities for graphics.

The file os.frt contains several utilities to use the operating system on which the
server is running.

The file needs.frt makes it extremely simple to automatically load all the
modules a project needs. Modules will be loaded only when they are not already
present.

2.6.4. The helpfiles
The helpfiles can be found in the subdirectory “doc” of the IFORTH directory.
There is a general helpfile, called forth.hlp for all built-in words and a helpfile
for the utilities mentioned in the previous section. The latest addition is a file
called i4thhelp.htm that is automatically generated from the ASCII *.hlp files.
This hyperlinked file can be viewed with an HTML aware editor or browser
(Lynx, Mosaic, Microsoft’s Internet Explorer, or Netscape).

2.6.5. The benchmarks
The benchmarks can be found in the subdirectory examples/benchmar of your
IFORTH directory. Part of the benchmarks have been adapted from existing C-
benchmarks. It may seem dubious whether straightforwardly recoding C-
programs into Forth is anywhere near appropriate. But anyway, the
performance of the resulting programs is always comparable with that of the C-
originals. The compilation time is somewhat faster than the time consumed by
current real-mode C-development tools. All programs have a .HELP command
that show you some information about the benchmark.

ackerman.frt is a classical ADA and Modula II benchmark, testing recursion.

IFORTH REFERENCE MANUAL Page 19─ ─
dhryston.frt is a Forth version of the well known DHRYSTONE benchmark.
It contains a typical (for C or FORTRAN that is) mix of instructions, but no
floating-point instructions.

mathtest.frt contains a simple test for floating-point functions, that can easily
be interpreted without need for much study.

savage.frt is also a very well known floating-point test. It gives an indication
of the speed and precision attained by the floating-point package.

The file sieve.frt contains, apart from the classical BYTE sieve benchmark, a
version of the sieving program that makes full use of the facilities in IFORTH.
It has become faster and more readable.

speedtes.frt tests and compares the speed of the two counted loop mechanisms
available in IFORTH.

thread.frt is another classical Forth benchmark, testing the speed of nesting.

whetston.frt is a Forth version of the well known WHETSTONE benchmark.
It contains a typical (for C or FORTRAN that is) mix of instructions, in
particular floating-point instructions. It gives an indication of the speed and
precision of floating-point.

2.6.6. The strict ANS Forth examples
The directory examples/ansi contains only pure ANS Forth programs, that
should run without modification on any ANS Forth platform. They show
techniques to use specific IFORTH capabilities without destroying portability.

The file horst.frt contains an iterative version of the HORST algorithm for the
factoring of numbers. It can handle very large number as far as space is
concerned, but running it will wear out your patience.

towers.frt contains an almost classical programming example, the towers of
Hanoi. This version employs character graphics to get some nice graphical
effects within the constraints of ANS Forth.

2.6.7. Showing off IFORTH: the graphics examples
In the directory examples/graphics you will find some graphics examples. They
all use the graphics toolkit provided in graphics.frt.

The program fractals.frt shows some Mandelbrot pictures, especially nice on a
high resolution color screen.

fern.frt contains a program that draws ferns. It is also fractal based, and you
may experiment to get different ferns by specifying different parameters.

2.6.8. The miscellaneous examples
The directory examples/misc contains examples that do not fit well in one of the
foregoing categories.

abacus.frt is a calculator, comparable to the traditional desk calculator that
comes with some unix systems.

myclock.frt presents a clock on the screen. It is another demonstration of

IFORTH REFERENCE MANUAL Page 20─ ─
character graphics.

The file roots.frt is a numerical example. It contains methods to find roots of real
functions, i.a. bisection and newton.

2.6.9. Other files
Many other files or even sub-directories of examples were added to IFORTH after
this manual was printed. It is left as an exercise to the user to find out what
these files do and whether they are useful.

2.7. Configuration per project or per user
Professional developers will want to divide their activities into projects with as
little interference between them as possible. Projects may be executed by
different persons with different preferences. The way to do this in IFORTH is to
create a project directory to place all relevant sources. Put a copy of iforth.prf
and other preference files in that directory. If you start IFORTH from this
directory, either by specifying the full path of ith.bat or with the IFORTH

directory added to your path, the local files will override those from the IFORTH

directory. A modified version of a utility from the include directory will override
the original utility.

IFORTH REFERENCE MANUAL Page 21─ ─
3. Working with IFORTH
This chapter is describes working with IFORTH. We will walk through a setup,
such that you can start productive work as soon as possible. But some feeling for
the inner workings is useful.

3.1. Some internals
IFORTH uses a “virtual server” concept in its I/O architecture. There is no real
server present with IFORTH for MS-DOS, but there is one for Linux, Windows,
and other DFW products (e.g. tForth). This server concept allows us to write all
DFW products in a modular fashion, minimizing the differences between the
Forths to a limited number of primitives.

IFORTH behaves as if it has no direct access to the keyboard, screen and disk.
The “server” is a subprogram that accepts commands, executes them and passes
the answer back to its so-called client. (The protocol is detailed in appendix II).
Basically, commands that should not be executed by IFORTH (because they
involve direct hardware manipulation) are passed to the server that interprets
and executes them. The server is written in C and linked with IFORTH, or it is
implemented as a device driver. In this way IFORTH can be ported to any system
that has a C-compiler installed (if you have the source code).

IFORTH has no problem whatsoever in manipulating any of the hardware
available in a PC. However, the kernel is written to minimize hardware
dependency as much as possible, to enable easy ports to future operating
systems or different hardware. The technique has been pioneered with the
tForth product, with very rewarding results. tForth and IFORTH have almost the
same look and feel, only differing in the parallel programming tForth offers. The
same source code will run on both Forths.

The present MS-DOS server is not written in C, but in a mixture of assembler
and Forth. The C-approach is used for Windows and Linux.

3.1.1. Processor startup
For Linux and Windows not much needs to be done.

For MS-DOS, DJ Delorie’s 32-bit GO32 DOS-extender is prepended to the
IFORTH executable. GO32 places the processor in protected mode and loads
graphic and ANSI drivers, then runs IFORTH. When IFORTH takes control it
parses the command line arguments and adjusts the memory map, when asked
to. After that the numeric co-processor is initialized. If no numeric co-processor is
available IFORTH can not be used (unless you ordered the special i3.exe binary).

3.1.2. Capabilities of the server
The (virtual) server program is built into IFORTH. The behavior of this “server”
can be controlled with command line options. The most important option is that
all that is on the remainder of the command line invoking the server (i3__.exe
for MS-DOS), is in principle passed to IFORTH and executed by it. One of the
commands you can pass to IFORTH is INCLUDE iforth.prf to pull in your
preferences.

IFORTH REFERENCE MANUAL Page 22─ ─
3.2. Command line options
The syntax for invoking IFORTH with command line arguments is:

ith [cmds]

The square brackets denote that a part of the command is optional. Most of the
time, once the system has been set up, you will just type ith.

The part called cmds can be any string. It contains Forth commands and is just
passed to IFORTH transparently. It is executed as if this text where typed in from
the terminal.

3.3. The edit-compile cycle
The edit-compile cycle for IFORTH. It is recommended to go to the directory where
you want to keep your source files. Once in IFORTH you can load a file by typing

INCLUDE filename

You can edit a file by typing

EDIT filename

Here I assume that you have installed your favorite text file editor according to
the instructions in the previous chapter. Using the editor is based on the
important and versatile SYSTEM command, explained in a separate section.

The (non-standard) word INCLUDE does some preparatory work that
culminates in calling INCLUDE-FILE , which is the standard word that expects
the descriptor of an open file and interprets all the lines of the file. INCLUDE
also closes the input file.

This is basically all you need for the edit-compile cycle. IFORTH has still one
feature to make life easier for the programmer. That is the word REVISION . It
is used as follows:

REVISION -miscutil “--- Several utilities Version 2 .01 ---“

It creates a word that can be used to forget the application, customary the
filename preceded with ‘-‘ (dash). It serves the same purpose as the standard
word MARKER, but it has a string attached to it that identifies the application.
REVISION also inspects whether a word with the name already exists, and in
that case executes it, i.e. it removes the previous instance of the application.
That is where its name comes from. It is explained in more detail in a separate
section, together with some complementing facility words.

There you are. You now know enough to start programming. The programmer
conveniences all behave as you will expect, but of course a study of the
“implementation overview” chapter will help you to get the most out of it.

3.4. Doing what Forth cannot do
When working with IFORTH you have three facilities working for you at once.
These are IFORTH itself, the operating system and the server. It may be that you
want something done that cannot be done by IFORTH itself. That is where the
notion of an escape comes in. By default you are “talking” to IFORTH but you may
escape to the operating system or the server by special commands that are called

IFORTH REFERENCE MANUAL Page 23─ ─
escapes. For both the operating system and the server escapes have been built
in.

3.4.1. Escaping to the Operating System
The (non-standard) word SYSTEM makes the operating system execute the
commands contained in a counted string. After completion of the commands it
returns you to IFORTH immediately. Words related to this are found in the utility
include/os.frt.

This command is at the heart of the OS-IMPORT facility described in the
installation chapter. The OS-IMPORT , as its name suggest, makes an
operating system command available from within IFORTH.

$” COPY” OS-IMPORT COPY

will create a word called COPY that passes the string “COPY” to SYSTEM . It
also passes the remainder of the line, e.g.

COPY D:\FORTH\F?.TXT B:*.BAK

is a Forth line that does the same as in MS-DOS / Windows.

The OS-IMPORT command is also used to put the operating system escape in a
syntactically more convenient form. In the default setup, the command OS, itself
defined with OS-IMPORT, will simply pass what is typed on the remainder of
the line to the operating system, e.g. for Linux:

OS mv /DOS/forth/examples/* /dev/fd0/examples/.

With additional parameters you can request OS-IMPORT to transform
arguments before the operating system is called. It can accomplish such things
as starting an editor with the cursor at the position where an error occurred
during including. See doc/os.hlp for more information. os.prf is an
accompanying file with preferences. With that as a guide you should be able to
use the OS-IMPORT facility to your advantage, without too much work.

3.4.2. Escapes supplied by the server
The server could in principle offer a possibility to talk to it directly. Useful
commands that it can execute are the resetting of IFORTH or a return to the
operating system. However, this has not been implemented for the current MS-
DOS and Linux IFORTH (with tForth you can sometimes call the Forth that the
server is written in).

3.5. How IFORTH finds its files

Files needed by an application, whether they are source files, data files or block
files, are first searched for in the current directory. Thus you may override each
system file. If a file is not present in the current directory the IFORTH-directory is
searched and its sub-directories doc , include and bin . The IFORTH-directory is
the directory where the ith.bat or ith file is located. Under MS-DOS this feature
is implemented with the DOS append command. The Linux and other C-servers
maintain a compiled-in path array.

IFORTH REFERENCE MANUAL Page 24─ ─
3.6. Modularity

In IFORTH you have available all words defined by ANS Forth. As Forth is
sometimes described as a tool to make application specific languages, it is useful
to have language extensions available. The facilities I have added to IFORTH are
subdivided into “modules”, one per file. Each module has its own “revision word”
or “module name”, conventionally derived from the file name with a leading ‘-‘
(dash). So “-strings” is the revision word for the module in strings.frt. If the file
is loaded again, after you revised it, REVISION will make sure that the old code
is forgotten.

Modularity is increased by the NEEDS facility. By specifying NEEDS <module
name> in a source, the required facility is loaded if it was not already present. It
may need other modules itself, but the only thing you have to do is check out
from which modules you need a specific word.

IFORTH would be a monster if all the auxiliary words present in modules were
visible. This “name space clutter” problem is present in all large interpretive
systems. Wordlists have done very little to relieve this. The reason is that if you
need a single word, you get the complete wordlist. Therefore, some people feel
that wordlists are a mere inconvenience. In IFORTH this problem is addressed by
the PRIVATES DEPRIVE mechanism. All words in a module that are present
between PRIVATES and DEPRIVE and are marked by PRIVATE , are not
visible once the module is loaded. For instance, the only word visible from the
help facility is HELP itself.

The modules loaded in memory can be listed by typing .MODULES . It is also
possible to add extensive help to a module by the word :ABOUT . That
information can be inspected by either .HELP for the current module, i.e. the
last loaded module with a revision word in place, or with .ABOUT module. In
header lines of glossaries (such as .hlp files) the name of the ANS word group is
placed at the extreme right. For glossary entries referring to a word from a
module, the module name is placed in that position. They are easily identified
because of the leading dash.

If you have a large application, revisions save considerable recompilation. After
editing a module, load the application again. All the low level utilities are still in
memory and will not reload.

Tools that are permanently loaded are best supported by a permanent addition
to the general help file forth.hlp. Help files are ordinary text files

3
. The format of

help files is described in help.frt. It amounts to glossary entries separated by
lines containing “#####”. If you are faithful to this format you can edit forth.hlp
directly.

3.7. Old (fashioned) hands are on their own...
If you insist on using block files, your text editor cannot handle your Forth

3 Some minimal formatting has been added since the addition of the HTML converter utilities. Check
the file header for details.

IFORTH REFERENCE MANUAL Page 25─ ─
sources and all the facilities described above are wasted on you. You probably
don’t mind because you have your own facilities, so I did not bother too much.

What I did do is make a block editor available so that you can get started. The
EDITOR wordlist is present already. If you have the system properly installed,
you will find a file editor.frt in the subdirectory examples/blocks , containing an
ANS Forth block editor.

Blocks are allocated in operating system files.

IFORTH REFERENCE MANUAL Page 26─ ─
4. Implementation overview

This section details what is left to the implementation by the standard. It
describes concepts and facilities that IFORTH provides, up to and beyond the
standard.

4.1. General
In IFORTH, 1 CELLS is equal to the word size of the underlying hardware.

IFORTH is a byte addressing, 32-bit Forth. This means, that the smallest element
that can be addressed is a byte (8 bits). Incrementing an address by one makes it
point to the next byte. The cell size is 32-bits, i.e. the data handled by all
common Forth words like DUP @ and the parameter and return stack are all 32
bits wide. Consequently a cell occupies 4 address units. A character occupies a
single byte. Double precision words are implemented, and handle 64 bits at a
time. An extended precision floating-point number takes 12 bytes in memory and
three cells on the fp-stack (IFORTH uses only 10 bytes of these).

A good standard program will run irrespective of the cell size, except when you
really need those 32 bits, be it for memory addressing or precision.

IFORTH comes in different configurations. You may check the configuration using
ENVIRONMENT? . For each configuration option provided, the environment
enquiries are included in this document. In IFORTH some information about the
configuration can be made visible by .SIGNON , or you can generate an
extensive report by running the utility whatenv.frt.

4.2. The stacks
IFORTH has five stacks: the data stack, the return stack, the system stack, the
local data stack and the floating-point stack. Calculation data is on the data
stack, except for floating-point data. Note that the fact that floating point
numbers reside on a separate stack has a profound influence on any calculation
that uses floating-point.

The return stack is used for subroutine nesting and for the storage of loop
variables.

The local variables are stored on a separate stack, called the local data stack,
that is used for nothing else. The standard allows local data to be allocated on
the return stack. iForth’s implementation of locals has none of the restrictions
that would result.

ANS Forth prescribes that control data and jump addresses are stored on a
so-called control stack. IFORTH stores all these on the return stack.

The system stack is often used as an extra stack for data manipulation in
applications. It has the advantage over the return stack that data need not be
pushed and popped in the same word, and that mistakes are not immediately
fatal. The other usages of the system stack are such that it effectively may be
considered as a miscellaneous multi-purpose stack.

IFORTH REFERENCE MANUAL Page 27─ ─
4.3. Floating point
IFORTH uses the built-in floating-point processor but since the hardware does not
provide all of the necessary algorithms, some of the transcendental functions
had to be emulated.

The result is a full IEEE 752 implementation of single, double and extended
precision floating-point. The default, implemented by the F… words (F+, F*
etc.), is double-precision, 64-bit.

Single or extended precision is available by specifying them with SF… or XF..,
e.g. SF+ SF* or XF+ XF* etc. . The FP stack is wide enough to hold an XFLOAT
with full precision (80 bits).

4.4. Numbers and their ranges
IFORTH has built-in floating-point. The floating-point can be either single, double
or extended precision, or absent. So all in all there are four configurations with
respect to floating-point alone. The single precision floating-point numbers are
stored on a separate stack and are 32 bits wide, IEEE standard single precision
floating-point numbers.

The extended precision floating-point numbers are 80 bits wide, IEEE standard
extended precision floating-point numbers. It turns out that there is a slight
speed advantage, approximately 15%, in using double or single precision

numbers. Of course there is a significant space advantage. IFORTH provides the
standard words SF! DF! (floating store single or double) and SF@ DF@ (floating
fetch single or double) to be able to use single or double precision float variables
where it counts. Ranges for numbers can be found in table 1. The hexadecimal
base is used because this eases interpretation of the ranges, except for the single
and double precision floating-point numbers.

There are essentially three version of floating-point possible. If floating point is
present (this may be seen from the environment variable FLOATING), precision
is either (1), (2) or (3) depending on whether the single, double or extended
precision version of the package is included. This can be tested with the
environment variables DOUBLE-PRECISION and EXTENDED-

type range (hex)

n -8000,0000 .. 7FFF,FFFF
u 0 .. FFFF,FFFF
+n 0 .. 7FFF,FFFF
d -8000,0000,0000,0000 .. +7FFF,FFFF,FFFF,FFFF
ud 0 .. FFFF,FFFF,FFFF,FFFF
+d 0 .. 7FFF,FFFF,FFFF,FFFF
f 1.18E-38 .. 3.4E34 signed, 6.9 digits (1)
f 2.23E-308 .. 1.79E308 signed, 15.6 digits (2)
f 3.37E-4932 .. 1.18E4932 signed, 18 digits (3)

1 Number ranges

IFORTH REFERENCE MANUAL Page 28─ ─
PRECISION .

4.5. System limitations
IFORTH will run any ANS Forth program provided none of the maxima listed in
appendix I are surpassed.

Some of the maxima are no restrictions of IFORTH per se, but are caused by the
host system.

IFORTH itself does not restrict file names in length or with respect to the
characters it may contain. It is recommended that for portable programs no case
sensitivity is assumed, and that the length be restricted to 8 characters plus an
extension of 3 (similar to MS-DOS). But see the section on the host system.

Since not all of these values are fixed, the utility program whatenv.frt is
provided that can list the values of almost all environment variables.

4.5.1. File handling for MS-DOS/Windows/Linux hosts
Some of the restrictions and possibilities that apply to IFORTH are imposed by
the host operating system rather than IFORTH itself.

File names are (voluntarily) restricted to 8 characters plus 3 characters,
separated by a dot. These are the customary MS-DOS/Windows path names,
drive letter, colon, path constituents separated by slashes, e.g.:

c:/iforth/include/miscutil.frt

Please note that all file names used in IFORTH can be written with either ‘/’
(slash) or ‘\’ (backslash) as the path separator, but also note that this might not
be true for other programs such as those called by the SYSTEM or OS
command. All file access errors that are detected by the host OS are also
recognized by IFORTH.

4.5.2. Terminal interaction
The system prompt is composed of the name of the topmost wordlist to be
searched, plus a ‘>’ sign. While you are typing a definition that spans several
lines, the system prompt is placed between square brackets (‘[’ and ‘]’). As a
matter of concession to Charles Moore, and because ANS requires it, ‘ok’ is still
printed after execution of a word.

The ANS Forth standard requires two words for terminal interaction: EXPECT
and ACCEPT . Both are present in IFORTH with the editing provided by the
server. The <BACKSPACE> is accepted as a “rubout character”. If it is typed it is not
put in the input buffer. Instead the last character present in the input buffer is
erased. The display is updated to reflect the actual content of the buffer.
Specifically, IFORTH will try to erase the faulty character by typing it over with a
blank.

The word EMIT actually sends non-graphic characters too.

4.5.3. Terminal interaction for PC hardware
The <BACKSPACE> and <ENTER> key of the PC keyboard description serve as
<RUBOUT> and <ENTER> keys for IFORTH. This just means that they behave as is

IFORTH REFERENCE MANUAL Page 29─ ─
usual under MS-DOS/Windows/Linux.

4.6. Programmer conveniences
The standard word ENVIRONMENT? is provided by IFORTH. It allows the
programmer access to knowledge about the Forth system as it is running on the
moment of invocation. In appendix I a table is presented of the values returned
for all possible enquiries. Refer to that section for an overview of what enquiries
are possible.

Apart from the words required or mentioned as optional in the standard there
are some IFORTH specific words. The environment variable IFORTH is set in a
IFORTH system. This allows you to use IFORTH specific possibilities by
conditionally compiling code that is automatically ignored on other systems.

The standard word DUMP is provided by IFORTH. It shows the addresses and
content in hexadecimal and also as characters, when possible.

The standard word BYE disconnects the server code from IFORTH. The system
command interpreter gains control (more precisely the program that started
IFORTH in the first place).

The standard word SEE is only available after loading the file see.frt. It displays
the Forth word as a sequence of machine code instructions. Most simple words
(like e.g. DUP) are not recognizable in the output. The optimizing compiler has
translated the glue words into machine instructions directly. However, a colon
definition that is called shows up as a subroutine call with a symbolic address.

The standard word .S prints the data stack. But it will also print the system
stack and the floating-point stack, and will use the current BASE (however,
floating-point numbers are always printed in decimal). Furthermore, numbers
on the data stack are printed unsigned unless the base is decimal.

In addition IFORTH supplies the non standard words .DATA .SYSTEM .FLOAT
to print the data, system and floating-point stacks separately.

The standard word WORDS prints all the wordnames in the current dictionary,
ssslllooowwwlllyyy. Its scrolling display can be stopped by pressing any key. It
will resume after pressing some other key, and abort by pressing <ESC>. So
WORDS can be terminated by pressing <ESC> once. Please try out WORDS:
WORDS? and doWORDS (you can get help on these by typing help <word> at
the Forth prompt).

The standard (but obsolescent) word FORGET takes a string argument from the
input stream and deletes from the dictionary all the words after the one specified
by that string. It is a somewhat dangerous word and has to be used with care. Do
not FORGET words that are executing in some parallel (multi-tasking) process.
Also do not forget executable code that is called via forward reference. Please
note that FORGET does not return the memory allocated with ALLOCATE ,
only what has been allocated in the dictionary by using ALLOT . Forget fields
can be used to free blocks of memory when the reference to that memory is
forgotten.

The standard word MARKER creates a word that will forget itself and all the

IFORTH REFERENCE MANUAL Page 30─ ─
words after it. It is intended to be much safer than FORGET and not subject to
all of its restrictions. In IFORTH, MARKER uses FORGET repeatedly.
FORGET is much safer than on most conventional systems to date, especially
when forget fields are used. With properly initialized forget fields the ANS Forth
restrictions on FORGET and MARKER do not necessarily apply to IFORTH.

The non standard word HELP is a great help. It shows the glossary information
of a word as available in this manual. When the file help.frt is loaded it can be
used as: HELP item .

Information on any item in any include file can be displayed with IHELP item.

4.7. Introducing the assembler
For details about the assembler see chapter 8.

No Forth system is complete without an assembler. The assembler is supplied in
the form of a wordlist called ASSEMBLER and an assembler word is initiated
by the compiling word CODE . CODE will put ASSEMBLER in the first place
of the search order.

No details concerning a processor instruction set are to be expected in a Forth
document. Here too, I have to refer to the ix86 Microprocessor Programmer’s
Reference Manual (appendix III). Apart from that I will restrict myself to a few
remarks. The instructions as to be found in the ix86 Microprocessor
Programmer’s Reference Manual are used, but in a Forth fashion. Each
instruction is placed after the data and a comma (‘,’) is appended to each
instruction word. In general no labels are used, instead the structured assembler
words BEGIN, WHILE, REPEAT, IF, ELSE, ENDIF, are provided. They are
used in a conventional way, and behave identically to the corresponding Forth
structuring words. END-CODE saves the new word and eliminates
ASSEMBLER from the search order.

The control information needed by these words is placed on the data stack. The
combination : ... CREATE ... ;CODE ... END-CODE may be used to make
defining words whose run time action is defined in assembler.

IFORTH REFERENCE MANUAL Page 31─ ─
5. The Language
In this chapter the words available in IFORTH are explained, with the exception
of some special subjects like assembly language programming. These will be
treated in separate chapters.

The main partition is along the line of the wordlists in IFORTH. The words you
would normally use in applications are in the FORTH wordlist. This comprises
effectively all of the ANS Standard Forth words, but there is a lot of “luxury”
above and beyond the standard. Underneath all this are the system words, the
nuts and bolts that keep IFORTH together. Extending the system itself is one of
the most powerful properties of Forth. So I do not want to withhold these
internals from you. But it is wise to keep them separated from the commonly
used words. This is done by putting them in a separate section. None of the ANS
Forth words are to be found in this wordlist, of course.

The words are grouped together in such a way that you will be able to find out
whether a certain word is present, without the need to know its spelling. In this
language section the stress is on understanding the relationship between words,
an issue often neglected in Forth documentation. For the situation where you
need to know the precise action of a word, you are referred to the glossary
chapter.

The glossary also shows whether a word is in the core set, in which extension,
and if it is in the standard at all.

In this chapter you will only see whether a word is in the standard or not. All
words that are in the standard are implemented in IFORTH.

5.1. We are not trying to teach you Forth
Descriptions are only given for non standard extensions. If you do not know the
meaning of a standard word, you will have to look it up in the glossary or in the
standard. Even if a word is not standard, conciseness is favored, but
completeness is never sacrificed. Where possible detailed descriptions are
omitted, especially for those words whose meaning is obvious or analogous to
documented words.

Use the glossary whenever you need precise knowledge about a word’s behavior.

5.2. The words
As announced, the available words are presented in logical groups. (If you want
to look up a word that you know already, look in the glossary.) Even for the
standard words this grouping probably is a valuable addition to the standard.
For example if you wonder whether there is a word that duplicates the top four
items on the stack, you try to look it up in the stack manipulation group. There
is nothing there with such a meaning, so it probably does not exist.

Also it helps you out if you know a word with a certain effect exists, but you have
forgotten how it is spelled.

IFORTH REFERENCE MANUAL Page 32─ ─
5.2.1. The stack manipulation group
IFORTH provides the following standard words for manipulating the data stack:
2DROP 2DUP 2OVER 2ROT 2SWAP ?DUP DEPTH DROP DUP NIP
OVER ROT PICK ROLL SWAP TUCK .

Also are provided -ROT equivalent to ROT ROT , and 3DUP similar to 2DUP
but copying the top three stack items.

IFORTH provides the following standard words for manipulations involving both
return stack and standard data stack: R@ 2>R 2R> 2R@ >R R> .

IFORTH provides the following standard words for manipulations involving the
floating-point stack: FDEPTH FDROP FDUP FOVER FROT FSWAP .

In addition the following words are provided with obvious meaning: F2DUP
FNIP FOVER .

Then there is -FROT equivalent to FROT FROT .

It may be seen from the environment enquiry FLOATING-STACK that floating
point numbers are on a separate stack for IFORTH. Unfortunately it is not easy to
write code that is transparent with respect to whether a floating point stack is
used, or floating-point numbers are on the arithmetic stack. Consider for
example the case where a float is fetched from an address on the data stack.
Certainly words that swap floats with integers etc. are justifiably absent.

Because use of the return stack is restricted and inherently dangerous, a third
stack, called system stack, is provided by IFORTH. The words >S S> S can be
used instead of >R R> R@ . The words SDEPTH SPICK for the system stack
are similar to DEPTH PICK for the standard data stack.

5.2.2. The integer and address arithmetic group
IFORTH provides the following standard words for integer annex address
manipulation: - + 1+ 1- ABS D+ D- DABS DMAX DMIN DNEGATE M+ MAX
MIN NEGATE and also the logical operations AND INVERT OR XOR .

In addition the following words are provided with obvious meaning: 2+ 2- M-
UM+ .

Integers and addresses are indistinguishable in Forth. IFORTH provides the
following standard words for address arithmetic: ALIGNED FALIGNED
DFALIGNED SFALIGNED CELL+ CELL/MOD CELLS CHAR+ CHARS
FLOATS FLOAT+ DFLOATS DFLOAT+ SFLOATS SFLOAT+ .

In addition the following words are provided, similar to CELL+ CHAR+ , but
decrementing the address: CELL- CHAR- .

The IFORTH words []CELL CELL[] []DOUBLE DOUBLE[] []FLOAT and
FLOAT[] help in addressing arrays of cells, doubles and floats. Each accept the
index followed by the address of the array (or in reverse order) and return the
address of the element. Using them enhances readability as well as portability.

IFORTH provides the following standard words for integer division and
multiplication: * */ */MOD / /MOD 2* 2/ D2* D2/ FM/MOD M* M*/ MOD
SM/REM UM* UM/MOD . The words 2* 2/ are shift operators that could be

IFORTH REFERENCE MANUAL Page 33─ ─
used for division and multiplication of unsigned numbers. See the section about
shifting operators.

In IFORTH symmetric division is the standard. This means that all division
operators are compatible with SM/REM except, of course, FM/MOD .

There is a way to switch the system to floored division. See the chapter about
customization.

5.2.3. The integer comparison group
IFORTH provides the following standard words for integer comparison:
0< 0<> 0> 0= < <> = > D0< D0= D< D= DU< U< U> WITHIN .

In addition the following words are provided with obvious meaning: <= >= D> ,
thus providing a more complete set of operators. Note that the use of <> is more
readable than the customary use of - , and it is safer because a pure boolean flag
is sometimes required.

5.2.4. Shift and rotate operators
Shift and rotate operators work on integers that are considered as bit sets. The
shift operators available in ANS Forth are RSHIFT LSHIFT 2/ 2* and all of
them work on unsigned numbers, except for 2/ . RSHIFT LSHIFT perform left
and right logical shifts over a variable number of bits. 2* performs a single bit
shift left. 2/ performs a arithmetical single bit shift right.

IFORTH also provides double precision version of these operators: DRSHIFT
DLSHIFT .

The rotate instruction ROR also shifts to the right, but it reinserts on the left
the bits that are shifted out. Rotate left is available with the word ROL. A multi-
bit arithmetic shift right is performed by ASHR . With this instruction the sign
bit is preserved when shifting.

5.2.5. The floating-point arithmetic group
IFORTH provides the following standard words for floating-point arithmetic: F*
F** F+ F- F/ FABS FMAX FMIN FNEGATE FROUND FLOOR FSQRT . The
following in the way of standard transcendental functions are provided: FACOS
FALOG FASIN FATAN FATAN2 FCOS FEXP FEXPM1 FLN FLNP1 FLOG
FSIN FSINCOS FTAN . In addition the following transcendental functions are
provided: FACOSH FASINH FATANH FCOSH FSINH FTANH . They are
the hyperbolic versions of the standard functions without the suffix ‘H’.

In addition the following words are provided: FSQR FDEG FRAD FSPLIT F+!
REDUCE.2PI REDUCE.PI .

FDEG converts an angle in radians to degrees and FRAD converts the other
way around.

FSPLIT splits the number on the stack in a mantissa on the floating-point stack
and an exponent with respect to base 2 on the data stack. F+! behaves similar to
+! but beware that the address and data are on different stacks.

Two words reduce the number on the stack to a given range, i.e. multiples of the
range are subtracted or added until the number fits in the interval -range/2 to

IFORTH REFERENCE MANUAL Page 34─ ─
+range/2. REDUCE.2PI reduces with respect to the range PI*2 and
REDUCE.PI with respect to PI .

5.2.6. The floating-point comparison group
IFORTH provides the following standard words for floating-point comparison: F~
F< F> . In addition the following words are provided with obvious meaning: F0<
F0<> F0= F0> .

(NOTFIN) tests whether the number on stack is a regular floating-point
number, i.e. it should not be infinite or not a number. (ISNAN) returns a flag
whether the number on stack is not a number.

5.2.7. Integer and floating constants
IFORTH provides the following standard words that put an integer constant on
the stack: BL FALSE TRUE .

In addition IFORTH provides the following floating-point constants: PI PI*2 PI/2
PI/4 LN2 LN10 , where the latter constants are the natural logarithm of 2 and
10.

Also present are the following IEEE floating-point “constants” +INF +NAN -INF
 -NAN meaning “plus infinity”, “positive not a number”, “minus infinity” and
“negative not a number”. These originate whenever a floating-point operation
cannot generate a valid result, for instance because it is mathematically
undefined, or the mathematical correct result cannot be represented within the
available range. None of these constants are in the ANS standard. They are only
“floating constants” by virtue of the fact that IFORTH handles them as possible
values for a definition by FCONSTANT FVARIABLE . When these constants
are passed to one of the floating-point formatter words they are handled as
special cases, e.g. -NAN FE. prints the text “-NAN”.

5.2.8. The conversions
IFORTH provides the following standard words for (partially) converting
arithmetic values among themselves and from strings: >NUMBER >FLOAT
D>F D>S F>D S>D .

Conversion from numbers to strings is called formatting and is treated in
separate sections.

The special word NUMBER? tries to convert a string to a single, double or
floating-point number. It also returns type information. In addition the following
words are provided with obvious meaning: F>S S>F . The word U>D converts a
single precision unsigned to a double number.

5.2.9. Fetch and store
IFORTH provides the following standard words for fetching and storing of
different integer types: @ 2@ C@ ! 2! C! +! COUNT .

Also the words C+! D+! are provided with meanings similar to +! but working on
the content of a character respectively double rather than a cell. The words D@
D! function similar to @ and ! but on doubles. They were in dpANS-3 but were
removed later on (by accident).

IFORTH REFERENCE MANUAL Page 35─ ─
The words ON OFF are used to store respectively TRUE FALSE into cells.
They accept the address of the flag on the stack and leave nothing.

The word TO may be used for storing data in “values” as well as local and
register variables. The IFORTH implementation is elaborate and warrants a
description in a separate section.

Whenever COUNT is used as a character fetch with auto-increment, I
recommend to use C@+ instead. A full set of these words is provided with a
meaning similar to C@+ : @+ @- C@+ C@- .

Also provided are the following standard words for fetching and storing floating-
point types: F@ F! .

A word with a meaning similar to C@+ is provided for floating-point numbers:
F@+ . In addition IFORTH supplies F0! that stores floating constant 0 at the
address on the data stack.

Also the standard words for storing as IEEE floats are provided: DF! DF@ SF!
SF@ . No ambiguities can arise during conversion because the processor uses the
IEEE floats internally. The reduction of precision is done with rounding and a
number that is too large will be converted to infinity first.

5.2.10. The TO-concept as an object-like paradigm
The TO-concept in IFORTH is best understood in terms of an object oriented
approach. The words FROM
TO ‘OF CLEAR +TO 0TO
SIZEOF /OF generate
messages that are understood
by words of certain types that
I will call TO-objects. So in
general you will see a
message followed by a TO-
object that accepts and
destroys that message. The
messages have the meaning
shown in Textbox 2.

These messages are vague
because they are so general. See the separate subsections about the different
objects for more specific information.

5.2.11. Terminal output of strings
The basic output word TYPE can be used to print a string to the screen. If the
string length is still hidden in the first character of the string, COUNT TYPE
can be used to print to the screen, which may be abbreviated to .$.

5.2.12. Formatting and terminal output of integers
Note that all words described in this section adhere to the convention that if they
contain a “.” (full stop) they perform terminal output. The only exceptions are the
words within parentheses like (D.) that write to a string.

IFORTH provides the following standard words for formatting integer types: #S #

Keyword Description

FROM Put your content on the stack
TO Store stack data into yourself
0TO or CLEAR Initialize yourself
+TO Add the top of the stack to

yourself
‘OF Put address of content on stack
SIZEOF Put size of content on stack
/OF Put number of elements on stack

2 TO messages

IFORTH REFERENCE MANUAL Page 36─ ─
<# #> ? . .R BASE D. D.R DECIMAL HEX HOLD SIGN U. U.R .

In addition to the standard words, the words OCTAL and BINARY switch the
input and output to the octal and binary number systems.

H. prints the number on the stack in an unsigned hexadecimal format (8 digits
with leading zeroes and preceded by ‘$’ (dollar sign)), regardless of the current
number base in effect.

DEC. UDEC. print the number on the stack in decimal, respectively unsigned
decimal (without a leading ‘#’) regardless of the current number base in effect. It
uses a variable length format. UD. UD.R are the unsigned equivalents of D.
D.R respectively.

The word (D.) leaves the address of a counted string, that contains what would
have been printed by D.

5.2.13. Formatting floating-point numbers
Note that all words described in this section adhere to the convention that if they
contain a dot they perform terminal output. The only exceptions are the words
within parentheses like (E.) that write to a string. IFORTH provides the following
standard words for formatting floating-point numbers: FE. FS. F.
REPRESENT PRECISION SET-PRECISION .

The dot-words recognize the special IEEE number representations and print
them.

In addition the following words are provided: (E.) (F.) E. F. E.R F.R . These
words are similar to D. and D.R in that the number is right adjusted in a field
with a width such as is specified in the top of the data stack. The ‘E’ words are
similar to FS. , the ‘F’ words try to write the number without using an exponent
(e.g. 10000 instead of 1E4). Variant words like (F.R) leave a temporary string
instead of typing it directly.

Five user variables determine the formatting of reals.

The user variable FMSIGN determines the mantissa sign. Its default value is 0,
which means that it suppresses a positive mantissa sign. If FMSIGN contains a
1, the sign for a positive mantissa is printed as a ‘+’. If it is 2, the sign for
positive mantissa is printed as a blank. The sign of a negative mantissa is
always printed, using a ‘-‘ character.

The user variable FESIGN determines the representation of the sign of the
exponent of a floating-point number. Its default value is 0, which means that it
suppresses the printing of the sign for positive numbers. In all other cases the
sign is printed as a ‘+’. The sign of a negative exponent is always printed, using
a ‘-‘ character.

The user variable FDEC contains the character that is used as a floating point.
Default it is ‘.’ (full stop). >FLOAT will interpret this character correctly on
input.

The user variable FECHAR contains the character that separates the mantissa
from the exponent. Default it is ‘E’. >FLOAT will interpret this character

IFORTH REFERENCE MANUAL Page 37─ ─
correctly on input.

The user variable FELEN determines the minimum number of digits used in
the exponent. Its value is 2 by default.

The set of user variables PRECISION FECHAR FDEC FELEN FESIGN
FMSIGN is saved on the stack using SAVE-FFORMAT and restored from the
stack using RESTORE-FFORMAT .

FSIGN is similar to SIGN but adds the sign of a floating-point number to the
result string, subject to customization by FMSIGN . The input of floating point
numbers by the default system handler NUMBER? is affected by setting any of
these customization variables.

Note again that the words containing a dot perform terminal output, except
those within parentheses. Also note that FDEC FECHAR are to be used with
care because you can produce numbers that cannot be easily read by other
standard systems or programs.

5.2.14. Parsing the input stream
IFORTH provides the following standard words for parsing the input stream: >IN
#TIB TIB SOURCE \ (TIB PARSE QUERY ACCEPT REFILL WORD .

5.2.15. Compiling numbers, chars and strings
IFORTH provides the following standard words for compiling double precision,
floating-point and single precision numbers once they are on the stack:
2LITERAL FLITERAL LITERAL . The generation of these numbers from a
string is in a separate section about formatting.

Conventional Forth compiles the number as a literal but, depending on the type,
prefixes it with one of the following (non-standard) words: (2LITERAL)
(FLITERAL) or (LITERAL) . This is done in such a way that during execution
the correct literal is put on the stack. In IFORTH the extra call to (LITERAL) or
(2LITERAL) is unnecessary as machine code can be compiled which pushes
integers on the data stack directly. Unfortunately this is not possible for
floating-point literals. An instruction to push a general floating-point constant
on the internal stack is missing, and for in-line floating-point constants the word
(FLITERAL) is needed.

The words ILITERAL ALITERAL are equivalent to LITERAL . However, they
have certain advantages with respect to optimization and relocatable code. More
information is available in the glossary. An example of their use can be found in
the utility arrays.frt in the include directory.

The following standard words for compiling or interpreting strings are also
provided: C” S” SLITERAL . During interpretation, the strings generated are
allocated in 4 static buffers that are cyclically reused. As a consequence no more
than 4 strings can be “pending”. If you need more, you will have to store in
buffers of your own.

The word ,” is similar to S” but it also places the string in the dictionary. It
parses characters delimited by ‘”’ (double quote) and allocates the packed string
at HERE . The dictionary pointer is adjusted to point just after the last

IFORTH REFERENCE MANUAL Page 38─ ─
character.

The following standard words for compiling or interpreting characters are also
provided: [CHAR] CHAR .

IFORTH also provides the similar words for control characters: [CTRL] CTRL .
This generates a byte with the value ^X where X is the character following in
the input stream. Again [CTRL] is used while compiling, CTRL while
interpreting.

5.2.16. Building data structures
IFORTH provides the following standard words for building data structures of a
certain type: CONSTANT 2CONSTANT FCONSTANT VARIABLE
2VARIABLE FVARIABLE VALUE DVALUE FVALUE . The data structure
gets its name from the input stream. The value types have a richer repertoire
than the standard requires, so they are described in separate sections.

The following standard words are also provided: CREATE DOES> ;CODE .
They are general tools to extend IFORTH with new data structures.

The following standard words that help to generate data structures in the
dictionary are also provided: , ALIGN ALIGNED FALIGN FALIGNED
SFALIGN SFALIGNED DFALIGN DFALIGNED ALLOT C, HERE
UNUSED .

In addition the following word is provided that compiles a floating-point constant
in the dictionary: F, .

5.2.17. Local data structures
ANS Forth fixes a particular syntax for local data structures with the word
LOCALS| . This is necessary because providing only the building block type
word (LOCAL) may lead to as many syntaxes for locals as there are Forth users.
Unfortunately, LOCALS| has arbitrary restrictions that are not necessary in
IFORTH. That is why I provide the more flexible LOCAL and DLOCAL words.
To deal with floating-point, a similar (FLOCAL) FLOCAL mechanism is
available (there are no floating-point type locals in ANS Forth).

Few of the restrictions that are mentioned in the ANS Forth document apply. In
particular it is not necessary to use END-LOCAL . Also it is allowed to execute
code between invocations of LOCAL in the same definition. See also the section
on LOCAL objects.

5.2.18. Program structures
IFORTH has built-in compiler security. So you will have to adhere strictly to what
is prescribed here, unless you turn the compiler security off. In particular a
programming construct can be substituted within some other construct. If the
outer construct is closed with the inner construct not completed, the compiler
will flag an error.

Program structure words in general have no run time stack effect, except for the
words IF WHILE REPEAT that consume a flag intended for influencing
program control flow. Flags are supposed to be true if the cell on the stack is
non-zero. As the branching and security information is kept on the data stack,

IFORTH REFERENCE MANUAL Page 39─ ─
program structure words affect this stack during compile time. In addition to the
data stack, sometimes the system and local stacks are needed during
compilation. Although this may seem terribly complicated, I guarantee that the
compiler extension examples given in the ANS document work, be it that
compiler security must be switched off for most of them (with SECURITY OFF).
Program structures can only be used within a colon definition; this implies that
IF ELSE THEN can not be used to direct the compilation process to handle e.g.
the absence of a floating-point co-processor. This useful feature is called
conditional compilation and is handled in a separate section.

The words IF ELSE THEN (in that order) bracket a conditional structure, such
as meant in the standard. In addition ENDIF is provided as an alias for THEN .

The words BEGIN WHILE REPEAT (in that order) bracket a mid-conditioned
loop, such as meant in the standard. Furthermore in IFORTH it is also allowed to
replicate the WHILE with the same effect, i.e. all of them will test a flag and
will transfer control to after the REPEATED (instead of REPEAT) if the flag is
not true.

The words BEGIN AGAIN (in that order) bracket a infinite loop such as meant
in the standard.

The words BEGIN UNTIL (in that order) bracket an end-conditioned loop such
as meant in the standard. IFORTH allows a BEGIN WHILE WHILE ...
?REPEATED structure. This construct can be built with standard words (
BEGIN WHILE WHILE ... UNTIL THEN THEN) but then lacks compiler
security.

The words DO LOOP or DO +LOOP (in that order) bracket a counted loop such
as meant in the standard. In these loops DO may be replaced with ?DO that will
loop zero times for equal bounds instead of the wrap-around looping of DO .
With the words I J access is provided to the loop counter values. In addition to
the standard, K is provided to access the outermost loop parameter in a triply
nested loop.

The words CASE OF ENDOF ENDCASE can be used to select one from a
number of actions. It looks like

CASE

A OF <ACTION-A> ENDOF

B OF <ACTION-B> ENDOF

...
(DUP) ABORT” unknown case”

ENDCASE

If the top stack item is A, <ACTION-A> is executed. If the top stack item is B,
<ACTION-B> is executed. ENDCASE drops the item from the stack. The
number of OF ... ENDOF lines is unlimited.

The words FOR NEXT bracket a simple down counting loop. IFORTH provides
UNNEXT as an immediate exit from such a loop (cf. UNLOOP), and I@ that
leaves the back counting index of such a loop on the stack (cf. I). To prevent

IFORTH REFERENCE MANUAL Page 40─ ─
looping once when a zero argument is supplied, use the construct FOR AFT ...
THEN NEXT or ?FOR ... NEXT.

The standard describes control words in terms of a control stack containing
addresses where to jump to or where destinations of jumps have to be filled in.

The following standard words for direct manipulation of this control stack are
also provided: CS-PICK CS-ROLL . You may use these words to define your
own program control structures. However, in doing so you may have to turn off
compiler security or extend it to your new structures.

5.2.19. Conditional compilation
The words [IF] [ELSE] [THEN] (in that order) bracket a conditional
compilation, such as meant in the standard. This is very useful for situations
where a program has to run in different configurations. Note that [IF] uses a
flag at compile time, influencing the compilation of a word. So you will often see
it in colon definitions preceded by a word between square brackets (e.g. [
LOCALS?]) to put this condition on stack.

5.2.20. Word-lists (vocabularies)
IFORTH provides the following standard words concerning word-lists, formerly
called vocabularies: EDITOR ONLY ORDER ALSO ASSEMBLER
DEFINITIONS FORTH FORTH-WORDLIST GET-CURRENT GET-
ORDER PREVIOUS SEARCH-WORDLIST SET-CURRENT SET-ORDER
WORDLIST . As no standard word exists to create a named WORDLIST ,
IFORTH provides VOCABULARY . A VOCABULARY-type word will change the
search order when it is executed.

5.2.21. Colon definitions and execution tokens
The colon definition is Forth’s way of defining new programs in terms of existing
ones. A colon definition may be characterized in two ways, by its name (a string)
and, more compactly, by its execution token.

IFORTH provides the following standard words to create a colon definition: : ;
IMMEDIATE :NONAME .

The following standard words to transfer program control from within a colon
definition to outside it are also provided: ABORT ABORT” CATCH EXIT
QUIT RECURSE THROW .

The following standard words to handle execution tokens are also provided: ‘ [’]
>BODY EXECUTE FIND .

In addition to the standard the word BODY> is provided, that is the inverse
operation of >BODY .

The following standard words are felt to belong in this group, but it is hard to
characterize them:] [EVALUATE POSTPONE STATE .

In addition to the standard the following words are provided: HEAD’ ?DEF
?UNDEF HIDE .

An other advanced header manipulation is to add a forget action to a named
definition. IS-FORGET accepts an execution token and parses name delimited

IFORTH REFERENCE MANUAL Page 41─ ─
by blanks. It tries to find the dictionary header pertinent to the name, issues an
error message if it was not found, otherwise fills the forget field of dictionary
header with the execution token on the stack. When forgetting the word the data
field address is put on the stack prior to executing the forget action.

5.2.22. Smart data structures
A particular type of colon definition is used to extend IFORTH with smart data
structures. To this purpose, IFORTH provides the following words: CREATE
DOES> FORGET> . They are used in the colon definition of a new defining
word, where the invocation of this new word generates an instance of a smart
data structure, featuring data as well as function.

It is defined as follows:

: <generic-word>

<anything>

CREATE <builds-part>
FORGET> <forget-part>
DOES> <does-part>

;

Everything from the body except the DOES> line is optional. It is used as:
<generic-word> <NEW-WORD> . CREATE generates a new header; it is
responsible for parsing the name <NEW-WORD>, when <generic-word> is
executed. The <builds-part> is supposed to allocate some data structure in the
dictionary. The <does-part> is some code that is executed by invoking <NEW-
WORD>; it gets the address of the data structure that was allocated to start
with. The <forget-part> is executed when <NEW-WORD> is forgotten.

In the <builds-part> typically also header modifying words like IMMEDIATE
and PRIVATE find their place.

The <does-part> may also be defined in assembler by replacing DOES> <does-
part> ; by ;CODE <does-part> END-CODE .

5.2.23. Terminal I/O
IFORTH provides the following standard words for terminal output: .” .(CR
EMIT EMIT? SPACE SPACES PAGE TYPE . The following standard words
for terminal input are also provided: ACCEPT AT-XY KEY KEY? .

The standard words EKEY EKEY? are implemented in the following way:
EKEY will correctly report any key that can be input in the environment (OS
dependent). This encompasses all straight keys combined with at most one of
CTRL, ALT or SHIFT pressed at the same time. This is much more than the 95
keys in the ISO set required by ANS Forth. In fact, it is even much more than
can be reported in a byte. The so-called “extended” keys of the PC (see any book
on PC hardware) are reported as a 16-bit entity where the lower byte is always
zero. For example the function key F1 is reported as $3B00.

IFORTH does not implement the complicated decoupling between KEY KEY?
EKEY and EKEY? given as an example in the ANS document. If KEY? tests the
keyboard and an extended key is pressed (e.g. F1), KEY? can be used to reports

IFORTH REFERENCE MANUAL Page 42─ ─
this. If one subsequently uses KEY to fetch the character, it will return an
ASCII NUL. If EKEY is used (which is not a very logical thing to do, given the
previous KEY?) it returns $3B00.

Note that EKEY>CHAR can be used to filter the output from EKEY so that it
becomes equivalent to KEY .

An example application of the word WAIT? is enabling the user to interrupt the
execution of WORDS . It is intended to be called in a loop, and returns TRUE if
the user wants to stop, FALSE otherwise. The user signals stopping by pressing
<ESC>. If the user presses any key other than <ESC>, WAIT? waits for the next
key press before returning.

BREAK? is slightly simpler. It waits for a key and returns TRUE if the user
presses <ESC> to signal stopping, otherwise FALSE . The word CLS clears the
terminal screen.

5.2.24. Strings and characters
IFORTH provides the following standard words for string handling: -TRAILING
/STRING BLANK CMOVE CMOVE> COMPARE FILL PAD SEARCH
SLITERAL .

Note the difference between strings of characters and address units.

In addition the following word is provided: PACK . It accepts a string in the
format <addres,count>, and the address of a place where a counted string can be
stored. It appends the constant string to it and returns the address of the
counted string. If it did not leave the address of the counted string, it could be
considered a string store operation, similar to ! .

>UPC converts the character on the stack to upper case. If it was not lower case,
it is not changed.

>GRAPHIC converts the character on the stack to a printable character. If it
was a non-printable character, it is changed into ‘.’ (full stop).

5.2.25. File handling and input/output
IFORTH provides the following standard words for operations on files identified
by a character string: CREATE-FILE DELETE-FILE OPEN-FILE RENAME-
FILE .

The following standard words for operations on files identified by a “fileid” such
as meant in the standard are also provided: CLOSE-FILE FILE-POSITION
FILE-SIZE FILE-STATUS REPOSITION-FILE RESIZE-FILE .

The following standard words for read and write operations on files identified by
a fileid are also provided: FLUSH-FILE READ-FILE READ-LINE WRITE-
FILE WRITE-LINE .

The following standard words for specification of access methods are also
provided: R/O R/W W/O BIN UNBUFFERED. If the BIN access word is
missing, the file is opened as a text file. This means that IFORTH guarantees that
when WRITE-LINE is used the resulting file is a text file in the sense of the
host operating system and will be compatible with host text editors and such.

IFORTH REFERENCE MANUAL Page 43─ ─
The following standard words for nested compilation from files are also provided:
INCLUDE-FILE INCLUDED RESTORE-INPUT SOURCE-ID
SAVE-INPUT .

Note that some file manipulations are only interesting for the users of blocks.
Those are not treated here.

5.2.26. Memory management
IFORTH provides the following standard words for memory management:
UNUSED ALLOCATE FREE RESIZE. A useful non-standard word is
AVAILABLE. The word ?ALLOCATE is a general error handler that acts on
the error codes returned by ALLOCATE FREE and RESIZE .

5.2.27. Vectored execution
An ANS Forth does not have any words that refer to vectored execution. The
addition of vectored execution to Forth is, of course, simple enough. It is
available in the source miscutil.frt in the include directory.

5.2.28. IFORTH sets
In IFORTH a very simple set mechanism is present. A set is a number of cells, the
first one containing the cardinality (number of elements) of the set, followed by
cells containing the elements. The dictionary mechanism is sufficient to generate
a set, e.g. by CREATE SOME-SET 3 , A , B , C , . The word INSET? accepts an
element and a set and looks up the element. It returns a flag whether the
element is present in the set.

5.2.29. Programmer conveniences
To keep the system under control, IFORTH provides the following standard words
to help the programmer: BYE COLD DUMP ENVIRONMENT? SEE .

These words are system-dependent and need a more detailed explanation, so
they were explained earlier in chapter 4.

Please note that SEE is only available after loading see.frt, so it is a loadable
extension.

5.2.30. Miscellaneous
IFORTH provides the following standard words that cannot be well categorized:
ERASE and MOVE .

5.2.31. Time and date
The standard words MS and TIME&DATE are provided.

In addition the words TIME DATE provide the time respectively date
information only, in the same stack order.

Moreover ‘TIME$ ‘DATE$ make available the information printed by those
commands, as a counted string, in the formats 23:13:00 and January 3, 2001.
Note that these strings are stored in a string pool that is also used for other
purposes, so they have a limited life span. If you copy the data immediately
there is no problem.

Finally .TIME .DATE and .TIME$ print the strings immediately.

IFORTH REFERENCE MANUAL Page 44─ ─
5.2.32. Trespassing into the BLOCK world
IFORTH provides the following standard words that handle the classical Forth
block editing system: BLK BLOCK BUFFER EMPTY-BUFFERS FLUSH
LIST LOAD SAVE-BUFFERS SCR THRU UPDATE . IFORTH also provides
the non-standard word BLOCK-FID .

In addition IFORTH provides the words USE USE-BLOCKS . They allow to
specify the file in which the blocks reside. USE accepts the name as an inline
string; USE-BLOCKS accepts the name as a counted string on the stack. These
words are similar to INCLUDE INCLUDE-FILE .

A simple public domain block-editor is provided in the file editor.frt in the block
subdirectory. This is supplied as is and without warranty. IFORTH fully
implements both the BLOCK Word Set and the BLOCK EXT Word Set. This
does not mean their use is encouraged.

There is a problem with blocks for systems with hardware multi-tasking, and
that is the guaranteed time a buffer or block stays available to a process.
Conventional Forth systems implement multi-tasking by having a round-robin
loop of tasks. When a task gets control, it can only be descheduled when it
executes certain clearly defined Forth words. This word set has now been
formally described in the Standard. The set contains all words that can be
expected to cause an I/O operation to take place, e.g. EMIT and TYPE .

Given this model, check out the following code for for a multi-programmed Forth
environment:

: DUMP-BLOCK (n --)

(1) BLOCK DUP \ get address of block n
(2) 512 TYPE CR \ type upper 512 bytes
(3) 512 + 512 TYPE CR \ type lower 512 bytes

;

This doesn’t work because the word TYPE causes descheduling. It is possible
that the block address obtained at (1) is invalid at (3). A simple solution is to
again execute BLOCK at line (3).

When hardware descheduling is fully automatic, as for the transputer, the
conventional model breaks down. Descheduling can even take place in the words
DUP and in the code generated for the literal 512.

I rejected the option to design IFORTH in a way that would have made hardware
descheduling impossible. An possible solution is to provide for only one buffer
and give the user an explicit semaphore for it. The example above then reads:

: DUMP-BLOCK (n --)

buf GETSEMAPHORE

BLOCK DUP \ get address of block n
512 TYPE CR \ type upper 512 bytes
512 + 512 TYPE CR \ type lower 512 bytes

buf FREESEMAPHORE ;

IFORTH REFERENCE MANUAL Page 45─ ─
Now the buffer belongs to the process executing DUMP-BLOCK and all is well.
Except for the fact that during the TYPE ‘s other processes could have made
good use of the buffer. Copying the block to a local buffer solves this remaining
inefficiency:

: DUMP-BLOCK (n --)

buf GETSEMAPHORE

BLOCK PAD 1024 CMOVE \ copy block to a local buffer

buf FREESEMAPHORE \ release it for others.

PAD 512 TYPE CR \ type upper 512 bytes
PAD 512 + 512 TYPE CR \ type lower 512 bytes
;

For one buffer the complexity is manageable, but for more buffers difficulties
arise.

As the ANS Forth documents states that “Manipulation of semaphores for
Standard words such as BLOCK must be incorporated automatically in the
driver-level code” I cannot give you the buf semaphore above. (Or the
semaphores when more buffers are to be supported). I finally decided to
implement the scheme above, with only one buffer, and to hide the semaphore in
the system words.

In iForth’s implementation, BUFFER requests the buffer semaphore. All the
words specified by the standard release it. Note that we need a special
semaphore to do this, as a process that simply types a character will now try to
release a semaphore for a buffer it has not requested first.

Furthermore the ABORT code of all processes contains action to release the
buffer semaphore, in order to prevent a system crash when a single process
hangs.

The set-up described works well in practice. A clear disadvantage is that it is
relatively hard to extend the concept to multiple buffers. However, I am sure my
users can at least port some their old code over to IFORTH.

5.2.33. The obsolescent words
IFORTH provides the following obsolescent standard words: [COMPILE]
EXPECT SPAN CONVERT TIB #TIB .

Use of these words is never needed because the standard provides some
alternative way to handle their functionality.

5.3. The TO-objects

Because TO-objects play an important role, this whole subsection of the current
chapter is devoted to different TO-objects. In the following the effects of all
possible TO-messages to all the TO-objects are described. A minus sign in the
tables indicate a message that is not allowed for the object.

The word FROM may always be omitted, an ANS Forth requirement.

IFORTH REFERENCE MANUAL Page 46─ ─
Sometimes there is a conflict about which object is the target of a message. This
can be resolved by using ((and)) .

5.3.1. General properties of TO-objects
For each type of TO-object (for example a TO-variable generated by VALUE) it
remains to be specified exactly what the effect of the message is. So probably a
TO-object of type TO-string would interpret the message +TO as an instruction
to append a string (specified via the stack) to itself. (TO-strings are not
implemented in IFORTH itself, but it is present in strings.frt in the include

directory). For a VALUE the meaning of the messages is pretty obvious, except
maybe for /OF . This message returns the number of discrete data elements
occupied by the structure. For a simple value or dvalue this returns one, but for
a TO-array it returns the number of elements in the array.

The TO-approach has two advantages. The messages may be used for several
types, which limits the proliferation of words. The ANS Forth standard uses this
to have the same words handle TO-variables and local variables. Also it may be
much safer to use than plain fetch and store. Compare for example FROM A TO
B with A @ B ! . Because in the TO-case B knows where to store, the
catastrophes of random stores are prevented. Storing of a wrong value at a
location where storing is allowed is seldom as fatal. If B turns out to be a TO-
constant the first example would simply result in an error message.

ANS Forth prescribes that FROM may be omitted; in fact it does not even
recognize it. Each time a message has been accepted a standard Forth has to
generate a FROM message to serve as a default for the next TO-action. So
FROM A TO B FROM C TO D may be abbreviated to A TO B C TO D . If
FROM were obligatory FROM A TO B would be equivalent to TO FROM A B
provided the messages where stacked. The “FROM is default” rule prevents this.

In some cases (notably arrays of
values if the index needed is itself a
TO-variable) this stacking can be
necessary. IFORTH provides (()) for
this situation. So TO ((FROM A))
B works as intended in the example
above. The FROM in front of A may
be omitted, but the brackets are
essential. The system stack is used,
so beware!

Keyword Description

FROM Put the object on the stack
TO Store top of stack into object
0TO or CLEAR Store 0 into object
+TO Add top of the stack to object
‘OF Address where object is stored
SIZEOF 1 Cells
/OF 1 Element

3 VALUE messages

IFORTH REFERENCE MANUAL Page 47─ ─
IMPORTANT! IFORTH itself uses an even more advanced version of the TO-
concept. All TO-words and the messages are immediate. Because the behavior
wanted at run time is already known at compile time, the compiler can
anticipate it and do much more optimization than would be possible otherwise.
In object parlance IFORTH uses early binding, where more classical Forths use
late binding.

The immediate and classical version
of the TO-concept can even be
mixed, but this is inadvisable. If you
want to write your own TO-objects,
you are advised to use a private
message variable, rather than hook
into the existing system with
%VAR.

5.3.2. The VALUE object
The objects generated by VALUE
are single precision integers. IFORTH

initializes the object by sending a CLEAR message to it, but a standard program
should not rely on this. The object reacts according to table 3.

5.3.3. The DVALUE object
The objects generated by DVALUE are double precision integers. IFORTH

initializes the object by sending a CLEAR message to it, but a standard program
should not rely on this. They react
according to table 4.

5.3.4. The FVALUE object
The objects generated by FVALUE
are floating-point numbers. IFORTH

initializes the object by sending a
CLEAR message to it, but a standard
program should not rely on this. They
react according to table 5.

5.3.5. The LOCAL object
See also the section about local data
structures.

The objects generated by LOCAL are
single precision integers. The dictionary entry created is temporary. LOCAL can
only be used inside a definition. The name of the object remains in the dictionary
until the current definition is finished with ; ;CODE DOES> .

Keyword Description

FROM Put the object on the stack
TO Store double into object
0TO or CLEAR Store 0. into object
+TO Add the double to object
‘OF Address where object is stored
SIZEOF 2 Cells
/OF 1 Element

4 DVALUE messages

Keyword Description

FROM Put the object on the
floating-point stack

TO Store float into object
0TO or
CLEAR Store 0E into object
+TO Add float to object
‘OF Address where object is stored
SIZEOF 1 Floats
/OF 1 Element

5 FVALUE messages

IFORTH REFERENCE MANUAL Page 48─ ─
Contrary to the other
objects, local objects are
created at run time.
IFORTH initializes the
object with the integer that
is on the top of the stack at
the moment of creation.
This works even for
recursive invocations.

The LOCAL objects react
according to table 6.

5.3.6. The FLOCAL object
See also the section about ‘local data
structures’.

The objects generated by FLOCAL are
single precision floating-point variables.
The dictionary entry created is
temporary. FLOCAL can only be used
inside a definition. The name of the
object remains in the dictionary until
the current definition is finished with
one of ; ;CODE DOES> . Contrary to
the other objects, local objects are
created at run time. IFORTH initializes the object with the floating-point number
that is on the top of the floating point stack at the moment of creation. This
works even for recursive invocations. The FLOCAL objects react according to
table 7.

5.3.7. The REGISTER object
The objects generated by REGISTER are single precision integers. Contrary to
all other objects the user has to
specify a number from 0 to 15 to
specify in which high speed
variable (called “register”) the
object is created. This number is
expected on the stack when
invoking REGISTER .

The IFORTH system itself, nor any
of the utilities in the include
directory uses any of the registers.

It may seem strange but getting
the address of a “register” is
perfectly possible and valid. A “register” is not initialized. It reacts according to
table 8.

Keyword Description

FROM Put the object on the stack
TO Store integer on top of stack into object
0TO or CLEAR Store 0 into object
+TO Add the integer on top of the stack to object
‘OF -
SIZEOF 1 Cell
/OF 1 Element

6 LOCAL messages

Keyword Description

FROM Put the object on the
floating-point stack

TO Store float into object
0TO or CLEAR Store 0E into object
+TO Add float to object
‘OF -
SIZEOF 1 Floats
/OF 1 Element

7 FLOCAL messages

Keyword Description
FROM Put the object on the stack
TO Store integer into object
0TO or CLEAR Store 0 into object
+TO Add integer to object
‘OF Put address of object on the stack
SIZEOF 1 Cells
/OF 1 Element

8 REGISTER messages

IFORTH REFERENCE MANUAL Page 49─ ─
5.4. The system words
Although it may seem a bit strange to divide Forth programming in application
and system programming, some words are more “system” than others. I grouped
a number of words in this sub-section because I feel that many applications do
not need them.

5.4.1. System vectors
The IFORTH system uses vectored execution for almost all of the terminal
interaction. As explained earlier, a vector is a variable that contains an
execution token. This is useful to accomplish many things. For example by
changing some execution tokens, the output of a large program can be forced to a
file, without the need to change the program itself. This is possible even after the
program has been compiled. Note that ANS Forth does not require the use of
vectors.

The execution tokens in the vectors ′′′′TYPE ′′′′ACCEPT ′′′′AT-XY ′′′′EMIT ′′′′EMIT?
′′′′KEY ′′′′KEY? ′′′′PAGE are executed if the corresponding unticked definitions are
executed.

All input of the keyboard goes through the definitions ′′′′KEY? ′′′′KEY . By
installing proper definitions you can temporarily feed the IFORTH interpreter
from a file.

All output to the terminal goes through the vectors ′′′′EMIT? ′′′′EMIT ′′′′TYPE . By
installing proper definitions you can temporarily redirect the IFORTH output to a
file.

The vector in ′′′′ACCEPT is also used by EXPECT . This is used by one of the
utilities provided (include/proced.frt) to add a fancy history mechanism to the
IFORTH command interpreter.

′′′′PROMPT contains the execution token of the definition that is to be executed
when the command line interpreter wants to have input. A classical Forth
system has no prompt, as Charles Moore disliked the implication of “hurry up
dummy”. I thought it useful to have the first word list in the search order
displayed, but you can easily suppress this by executing 0 ′′′′PROMPT ! . The
default prompt also shows that you are in compilation mode by displaying the
name of the current word list surrounded by square brackets.

′′′′TAIL contains the execution token of the definition that is to be executed when
the command interpreter has finished a line. It is customary to print the text ok.
IFORTH is no exception to this. Unlike the prompt, if a command ends by QUIT
ABORT this message is suppressed: the command is not finished but broken off.

′′′′BOOT contains the execution token of the definition that is executed by COLD
after all initializations are done. A turnkey application can be build by storing
the execution token of the word that starts the application in ′′′′BOOT. Then
execute the phrase SAVE-SYSTEM filename.GNU to save a new executable
IFORTH system. There is a makesys.bat file on the distribution diskettes that
converts a *.GNU file to *.EXE (it assumes that you have the relevant DJGPP
files in your path).

IFORTH REFERENCE MANUAL Page 50─ ─
′′′′NUMBER contains the execution token of the text interpreter NUMBER? that
converts a string to a number. It is executed whenever IFORTH cannot find a
word in the vocabulary. Normally, (if NUMBER? is installed) it recognizes
integers, doubles and floating-point numbers. It is this word that understands
all the different notations allowed in IFORTH. If a double number was converted,
the user variable DPL contains the location of the decimal point, i.e. the number
of digits after the decimal point, or -1 of there was none. In principle you could
replace the content of ′′′′NUMBER with a different action than NUMBER? ,
however you should take care to obey its stack behavior. Be warned that this
mechanism may change in future versions without notice.

5.4.2. Workspace registers and stack pointers.
IFORTH has reserved 16 memory cells in its current workspace. They can be
addressed somewhat faster than a general memory location. IFORTH tries to
make optimal use of these workspace registers, as I will call them throughout
this section.

The words RP@ SP@ FSP@ SSP@ give the values of stack pointers for the
return stack, data stack, floating stack and system stack respectively. The value
is put on the data stack, and the data stack pointer is considered before this
pushing takes place.

At the addresses RP0 SP0 FSP0 and SSP0 the values of the stack pointers for
empty stacks are saved. Executing them puts the address on the data stack.

The words RP! SP! FSP! SSP! reset the respective stacks to a value that is
popped off the data stack. For example, SP0 @ SP! empties the data stack.

All stacks grow downwards and are one cell wide, except for the floating point
stack if DOUBLE-PRECISION is TRUE in the environment, in that case the
width is two cells. If EXTENDED-PRECISION is TRUE , the width is three
cells.

5.5. Internals of the TO-object mechanism

The IFORTH TO-object mechanism consists of
TO-messages, TO-building words and TO-
objects. With each TO-building word (e.g.
VALUE) you can build TO-objects of a certain
class, in this case the TO-variables. Contrary
to older implementations IFORTH selects the
action at compile-time, and not at run-time.
The consequence of this behavior is that both
the TO-messages as well as the objects are
immediate words.

Messages are global and unspecific. They are
accepted, or ignored, by any TO-object executed. A message is generated by
storing a certain value in the variable %VAR . Table 9 presents an overview of
the message words with the content of the message.

In the DOES> part of the compiling word, a CASE statement interprets the

Keyword Value of %VAR

FROM 0
TO 1
0TO or CLEAR 2
+TO -1
‘OF 3
SIZEOF 4
/OF 5

9 TO message numbers

IFORTH REFERENCE MANUAL Page 51─ ─
messages, preferably in accordance with their informal meaning. You may of
course add your own messages.

As a consequence of FROM being a default, any TO-object should reset %VAR
to 0.

5.5.1. Writing your own server
Although the MS-DOS version of IFORTH does not in effect use a separate server
program, newer releases (Windows) use one. Whatever the actual situation,
IFORTH is written in such a way that you can always assume the existence of
such a server. In that way it is possible to be completely decoupled from the
hardware. Connected to this server idea is the concept of a “boot link”, a single
communication channel to access the server. This boot link becomes a shared
resource once IFORTH multi-tasks. Multi-tasking is officially supported, all
kernel code is “boot link aware” and uses semaphores and descheduling where
appropriate.

The words described in this section can be used to write your own server, or an
extension to the existing server. At the lowest level there is a handshaking
protocol that should be of no concern to you, if you use the facilities provided
here.

The elementary instructions to access the boot link are _RX _TX {{ }} .

{{ ... }} marks an area where you have exclusive access to the boot link. You
should use the elementary access commands only within such a region.

_RX returns a byte from the boot link as soon as the server has one available.
_TX sends a byte to the server.

!TERMINAL performs all communication with the host computer according to
the protocol in discussed in the appendix II. It accepts a variable number of
parameters followed by the integer representing the command and returns a
variable number of parameters. If you extend the protocol, you may use
!TERMINAL and resort only to the elementary boot link access for the new
commands.

IFORTH REFERENCE MANUAL Page 52─ ─
6. Normal customization
IFORTH allows you to extend the system itself, without having to load your
environment every time you start up. This capability is provided with SAVE-
SYSTEM <name>. (Under MS-DOS a copy of D.J. Delorie’s GO32.EXE is
needed).

6.1. Building a fatter Forth system
The file iforth.prf will be loaded automatically upon start up. It contains the
utilities that you elected to have available.

If you want access to operating system commands transparently, use the import
facility (see also chapter 3.4.1). You may then add the commands that you want
to be imported to the file os.prf. You have to include the file os.prf.

If you want the help system available, include the file help.frt.
If you want the disassembler available, include the file see.frt.

6.2. Building a leaner Forth system
At present there is no provision to specify that you do not need e.g. the floating-
point facilities, such that they are not loaded and occupy no space. On the other
hand you can easily build a turn key system. Simply put all commands that are
allowed in this system in some wordlist and leave the other wordlists out of the
search order. Use PRIVATES ... DEPRIVE to keep all internal words of your
package invisible. The use of individual words can be screened off by HIDE .

These measures will result in a system that has a very clean appearance
towards the user. But such a system can not be seen as a safe system since with
some effort the user still has access to all system facilities.

6.3. Turnkey systems
It is occasionally useful to keep the command interpreter available for the user,
so he/she may add his own colon definitions and operating systems facilities. If
you want to keep all Forth-like features away, you can use ′′′′BOOT . The word
whose execution token is in ′′′′BOOT will be executed on startup. This can be a
command interpreter that replaces the Forth command interpreter. To build a
turn key system under MS-DOS a copy of the GO32.EXE file is needed.

6.4. Little is impossible...
If you have special wishes that you feel are possible with IFORTH but that you
cannot accomplish with the facilities provided, I will be glad to advise and, most
probably, help out.

IFORTH REFERENCE MANUAL Page 53─ ─
7. Programming in assembler
Using assembly language gives ultimate control over a processor at the expense
of safety and convenience. IFORTH supplies you with a full protected-mode
assembler for the Intel 386/486/586 and 387 processors.

An assembler instruction in IFORTH is equal to the mnemonic as mentioned in
the Intel documentation, in lower case and with a comma appended.
Throughout, the Forth convention is obeyed that the instructions that assemble
end in a comma. This convention extends to all auxiliary instructions that add to
the code that is generated, or modify it. Furthermore, there is the convention
that operands are parameters to these instructions. Operands are put on the
stack in the customary <source> <destination> <count> order. However, the
overal effect is that the IFORTH assembler source code looks exactly opposite to
the standard Intel notation:

Intel I FORTH
mov eax, 2 2 b# -> eax mov,

7.1. The low level programming model
Of course IFORTH is mapped as directly as possible on the hardware. The biggest
mismatch is that a Forth needs multiple stacks, whereas Intel processors
support only one stack. This problem was solved by keeping every stack pointer
in a processor register. Access to a stack is done by temporarily exchanging the
proper register with the hardware stack pointer.

The five IFORTH stacks are shown in Table 10.

As you can see, the floating-point stack
pointer is not in a processor register.

A pointer to the USER area is memory.
The USER area is organized like an
array.

The segment registers CS, DS, ES, SS,
FS and GS should be handled with care
as IFORTH runs in 32-bit protected
mode. This means a segment register
can only contain valid selectors (see the
Intel documentation). We conclude that only the EAX, EBX, EBC, EDX and EDI
register are free for general use.

IFORTH is subroutine-threaded and compiles to machine code, meaning that
every Forth word is just a conventional subroutine. As the Forth data stack is
implemented on the processor hardware stack, making a subroutine call
(executing the next Forth word in the definition) puts a return address on the
Forth data stack, thus obscuring the parameters for the next Forth word. This
problem is handled differently in CODE words and colon definitions.

• On entry of a CODE word, the top of the hardware stack (the return
address) is popped to EBX by a “hidden” prelude. The user code then has
two options:

 stack ptr register

data ESP
return EBP
system kept in user area
local ESI
float kept in user area
user area base kept in memory

10 Register usage

IFORTH REFERENCE MANUAL Page 54─ ─
1) save EBX, preferably on the Forth return stack with the rpush,

macro, do something, perform the rpop, macro followed by ebx jmp,
2) simply don’t use EBX until it is time to return, then do ebx jmp,

• On entry to a colon definition a hidden prelude performs ebx pop, rpush, .
The high level NEXT code is simply rpop, ebx jmp, .

• The run-time code for DOES> is nothing (the proper pfa is on the data
stack already).

A disadvantage of this technique is that it makes subroutine calls slower
because the return address must be explicitly saved in the prelude for every high
level Forth word. Despite this disadvantage I decided to use the call mechanism
as the threading method for IFORTH. The decrease in speed becomes
unimportant once the time taken for these extra instructions is negligible
compared to the time the high-level Forth word needs to execute. This can be
assured by compiling selected words in-line instead of calling them. The trade-off
here is the resulting size of the compiled code. This technique is used extensively
in the IFORTH kernel.

Note that IFORTH optimizes the code whenever it is given the opportunity. One of
the things it does is expanding simple words like DUP or OVER inline while
checking if pushes and pops of the data stack can be eliminated. The strategies
followed are not obvious and using SEE on the result may be quite confusing.
Another feature of IFORTH is tail-recursion removal. This means that

: bar ‘A’ EMIT ;
: foo bar ;

is not translated to

....

bar d# call,
rpop,
ebx jmp,

but to

....
bar d# jmp,

Certain popular Forth tricks like

CREATE jumptable] EMIT TYPE PAGE READ-LINE [\ addresses (??)

won’t work as expected with IFORTH. (The ANS Forth standard does not allow it
anyway). For this special, quite useful, case the words EXEC: EXEC; are
provided in /include/miscutil.

Finally, do never use something like

7 CONSTANT fubar

: RATS fubar EMIT ;

RATS CHAR ! fubar >BODY ! RATS

IFORTH REFERENCE MANUAL Page 55─ ─
IFORTH will optimize the access to fubar in RATS, compiling an in-line literal.
Your changing of fubar will not work. Why not change fubar to a VALUE if you
need the special behavior?

The optimization IFORTH performs would not have been possible with previous
Forth standards. But now it is.

7.2. Customizing assembly
The behavior of the assembler can be adjusted in a number of ways, apart from
the adjustments made to the compiler in general. AWARNING is a flag that,
when true, gives warning when assembler instructions used are not available on
the current target cpu as stored in the variable #CPU . This variable is
initialized with the device number of the processor you are currently running on.
If you are using smart macro’s, optimal code will be generated for that cpu. In
this way you can write largely CPU-independent assembler code. When cross
assembling you must properly fill in this variable.

Internally the assembler uses a number of tables to look up capabilities of
different processors. These are organized as predefined sets, compatible with the
INSET? lookup word.

7.3. How to learn about the hardware
It is neither possible nor necessary to give a complete list of the instructions that
are accepted by the IFORTH assembler. You need the ix86 Microprocessor
Programmer’s Manual.

When very low-level access to BIOS or DOS is wanted you must realize that
IFORTH is running in protected mode, with the aid of the D.J. Delorie’s Dos
Extender (djgpp, go32.exe). This dos extender does not allow arbitrary call’s to be
made. Especially BIOS call’s that (temporarily) modify segment registers will
halt the machine. Furthermore, it was found that the extender program
sometimes uses the EBP register for its own purposes.

You may be a bit disappointed about the slow file, screen and graphics I/O of
IFORTH for DOS. This is caused by non-optimal performance of GO32. The
advantage of using only standard features was that IFORTH could easily be
ported to 32-bit operating systems like Linux and Windows.

7.4. Invoking the assembler
The assembler is invoked by the CODE ... END-CODE sequence. The assembler
instructions that may be filled in at the ellipses add code to the code space,
which is in fact the same space as is used by the COMPILE, instruction.
Assembler instructions are, in Forth fashion, interpreted, i.e. STATE is FALSE
while assembling. That means that the data for such instructions that accept an
address or data can be generated by the full power of IFORTH. For example you
may invoke a Forth word to calculate the address as follows: 3 78 + d# eax mov, .
This is also the reason that in the glossary assembler words have an assembly
and an execution behavior, whereas compiling words have a compilation and an
execution behavior. With the execution behavior of an assembler word we mean
the effect of the code that is added to the word that is being defined. The

IFORTH REFERENCE MANUAL Page 56─ ─
assembly time behavior is the addition of the code to the code space.

The assembler contains very many words. They are put away into a separate
word-list, called ASSEMBLER . CODE automatically adds this word-list in
front of the word-lists to be searched, and END-CODE removes this word-list
from the search order. CODE also adds a few bytes of code that are always

needed, as explained in section 7.1 and 7.6.1.

7.5. The memory model
A designated amount of memory is taken over by Forth. About 7 MB is reserved
to load the kernel and stacks and to allow new definitions to be added. The rest
is used as a heap from which chunks can be allocated.

7.6. The Forth assembler interface
Any IFORTH word, thus also words generated by the assembler, are invoked by
the call instruction.

7.6.1. Calling convention
In calling a word all registers are
lost.

Because IFORTH uses the hardware
stack as its data stack, an
assembler word has to start with
ebx pop, in order to expose the
passed parameters. This
instruction code is assembled by
CODE automatically.

IFORTH words do not require that
registers are restored at return.

Important: Where the user code
starts, the EBX register contains
the return address, so a ebx jmp, instruction suffices to return. Of course, if the
content of register EBX does not remain valid, it has to be saved. By convention
this is done with rpush, .

7.6.2. Using the workspace from assembly
The important IFORTH registers such as stack pointers are located at a favorable
place in the workspace or in registers.

For all variables symbolic names are provided. The actual value of the offsets
may vary with the version of IFORTH you are using.

Table 11 shows which offsets are used in the workspace (among others).

See also the section “The system words” of chapter 5.

7.7. Macro’s and macro groups
A macro is a Forth definition that groups instructions that occur together often.

IFORTH name Meaning

FFSP offset for floating-point
stack pointer

FTL offset for task link pointer
FCODE offset for base of code area
FNAME offset for base of data area
pr0 scratch register 0
pr1 scratch register 1
pr2 scratch register 2
pr3 scratch register 3

11 Stack pointers and registers

IFORTH REFERENCE MANUAL Page 57─ ─
It is also possible that a macro accomplishes things that are more involved,
especially if it has arguments, for instance a macro can include repetitions or
decisions, or do some processing on the arguments.

A clever use of macro’s can make a program much more readable and also much
safer.

7.7.1. Comparison macro’s
=, <>, test for “equal” and “not equal” respectively.

<=, <, >=, >, check the signed comparisons “less or equal”, “strictly less than”,
“greater or equal” and “strictly greater than” respectively.

u<=, u<, u>=, u>, check the unsigned comparisons “less or equal”, “strictly
less than”, “greater or equal” and “strictly greater than” respectively.

0<, 0>=, 0<>, 0=, check the comparison “signed less than zero”, “signed
greater or equal to zero”, “unequal to zero” and “equal to zero”, respectively.

ov, nov, check whether the last operation overflowed or not, respectively.

7.7.2. Mobility macro’s
Mobility macro’s perform data transfers between the internal registers and the
IFORTH stacks. This is more convenient than using the stack pointers that are
available to assembly processes.

Mobility macro’s follow a naming convention. They consists of an action, the
quantity and the stack involved. Sometimes a number is appended to the stack
name part.

The action is one of pop, push, get and put . Popping and pushing means
popping from and pushing onto some IFORTH stack. get means that the data is
duplicated from the IFORTH stack.

The quantity is the number of items handled. A one is default and hence
omitted.

The stack is indicated by one of the prefixes: ‘d’ for data stack, ‘l’ for locals stack,
‘r’ for return stack, ‘s’ for system stack and ‘f’ for floating point stack. Items
popped from the floating-point stack are put onto the internal floating-point
register stack. Items popped from all other stacks are put into the EBX register.

Not all words within this naming convention are available and most of them
have side-effects you should be aware of, so they are described separately.

dpop, transfers a number from the IFORTH data stack to the EBX register.
dpush, transfers a number to the IFORTH data stack from the EBX register.

put, replaces the topmost item of the IFORTH data stack. Its new content is the
EBX register. get, duplicates the topmost item from the IFORTH data stack to the
EBX register.

rpop, rpush, transfer a number from, respectively to, the IFORTH return stack.

lpop, lpush, transfer a number from, respectively to, the IFORTH locals stack.

spop, spush, transfer a number from, respectively to, the IFORTH system stack.

IFORTH REFERENCE MANUAL Page 58─ ─
fpop, fpush, transfer a floating-point number from, respectively to, the IFORTH

floating-point stack. As a side effect the content of the EAX register is lost.

fput, replaces the topmost item of the IFORTH floating-point. Its new content is
popped off the internal floating-point register stack. fget, duplicates the topmost
item from the IFORTH floating-point stack to the internal floating-point register
stack.

7.7.3. Macro groups for structured program control
The macro’s for structured program control have a non-trivial assembly time
behavior. They use the data stack for bookkeeping. So this can interfere with
user defined macro’s.

The combination BEGIN, ... AGAIN, will have the effect that the code filled in
at the ellipses is repeated indefinitely.

The combination BEGIN, ... UNTIL, will have the effect that the code filled in
at the ellipses is repeated until UNTIL, detects the zero flag is set.

BEGIN, ... WHILE, ... REPEAT, is very similar to the Forth BEGIN ... WHILE
... REPEAT construct. The part between BEGIN, WHILE, is always executed.
WHILE, will inspect the zero flag and if it is zero, control is transferred to the
statement after REPEAT, . Otherwise the part between WHILE, REPEAT, is
executed and control is transferred to the statement after BEGIN, .

IF, ... ELSE, ... THEN, or IF, ... THEN, are also similar to the Forth constructs.
IF, will react on any of the flags set by a comparison macro and transfers control
to the statement after the ELSE, or THEN, . ELSE, will merely transfer control
to after the THEN, . ENDIF, is an alias for THEN, .

AHEAD, can be used to generate constructions of your own. See the detailed
explanation in the glossary. You will have to understand the internal working of
the other words of this section to cooperate.

Future IFORTH compilers may cause descheduling of a process when it executes
an unconditional jump. This can be prevented by replacing it by an artificial
conditional jump. AHEAD, ELSE, REPEAT, assemble unconditional jumps
and hence mark points where the process could be descheduled.

This can be prevented by using conditional jumps. The words to use are
AHEAD-D, ELSE-D, and REPEAT-D, . The suffix means “No Descheduling”.

Last but not least I show an example that uses macro’s of all of the groups. It
throws away all items from the stack up till, but not including, a zero that is
used as a marker:

BEGIN, get, 0<>, WHILE, dpop, REPEAT,

It probably will convince you that pre-defined macro’s can make life much easier
for the assembly language programmer.

IFORTH REFERENCE MANUAL Page 59─ ─

iForth Appendices

I. Forth Environment

The standard word ENVIRONMENT? is extended to understand more strings than
the standard requires. All the strings specified in the standard are included.

The following table contains the standard strings. The value type column
contains the values that are common for all IFORTH implementations. (Note that
this may not be correct if yours is a customized version).

Currently there is just one version of IFORTH, which runs on the i386+387
combination or on the i486 / Pentium.

The following table contains specific data:

String Value
type

Value Interpretation

ALIGN n 4 alignment granularity, in
address units, of an
aligned address.

/CHAR n 1 size of a character in ad-
dress units

/COUNTED-STRING n 255 maximum number of charac-
ters in a counted string

/HOLD n 80 maximum size of a pictured
numeric output string in
characters

/PAD n 256 size of the scratch area
pointed to by PAD, in char-
acters

/TIB n 256 size of the text input
buffer in characters

ADDRESS-UNIT-BITS n 8 Size of one address unit in
bits

CORE flag true core word set present

CORE-EXT flag true core extension word set
present

FACILITY flag true facility word set present

FACILITY EXT flag true facility extension word set
present

FULL flag true full compliance (i.e., not
a subset)

MAX-CHAR u $ff the maximum value of any
character in the
implementation-defined
character set

MAX-D u $7fffffffffffffff largest usable signed dou-
ble number

MAX-N n $7fffffff largest usable signed inte-
ger

MAX-U u $ffffffff largest usable unsigned
integer

MAX-UD ud $ffffffffffffffff largest usable unsigned
double number

RETURN-STACK-CELLS n 256 maximum size of the return

IFORTH REFERENCE MANUAL Page 60─ ─

iForth Appendices

stack in cells
STACK-CELLS n 256 maximum size of the data

stack in cells
BLOCK flag true block extension word set

present
BLOCK-EXT flag true block word set present

DOUBLE flag true double number word set
present

DOUBLE-EXT flag true double number extension
word set present

ERROR-HANDLING flag true error handling word set
present

ERROR-HANDLING-EXT flag true error handling extension
word set present

FILE flag true file word set present

FILE-EXT flag true file extension word set
present

FLOATING flag true floating-point word set
present

FLOATING-EXT flag true floating-point extension
word set present

FLOATING-STACK n 64 n is the maximum depth of
the separate floating-point
stack.

MAX-FLOAT float 1.797E308 or
...
or ...

largest usable floa-
ting-point number. maximum
depends on floating point
model used.

#LOCALS n 256 maximum number of local
variables in a definition

LOCALS flag true locals word set present

LOCALS-EXT flag true locals extension word set
present

MEMORY-ALLOC flag true memory-allocation word set
present

MEMORY-ALLOC-EXT flag true memory-allocation extension
word set present

SEARCH-ORDER flag true search order word set pre-
sent

SEARCH-ORDER-EXT flag true search order extension word
set present

WORDLISTS n 16 maximum number of word
lists usable in the search
order

TOOLS flag true programming tools word set
present

TOOLS-EXT flag true programming tools extension
word set present

STRING flag true string word set present

STRING-EXT flag true string extension word set
present

The following table is specific for IFORTH:

IFORTH REFERENCE MANUAL Page 61─ ─

iForth Appendices

String Value
type

Value Interpretation

/DATA-SPACE n - the maximum number of cells that
an application program may attempt
to ALLOT

DOUBLE-PRECISION flag - returns the precision of the
floating-point package

EMULATED flag - true if the floating-point is emu-
lated, false if hardware is used

SERVER char ‘F’
4 returns a character that identi-

fies the server being used.
SYSTEM-STACK-CELLS n 256 Maximum size of the system stack

in cells
IFORTH flag true true if this is a iForth system

VER n $107 the version number of iForth

 4 The standard server identifies itself as 'C' because it is written in the C programming

language to be highly portable. Other servers are:
'F': a server written in Forth which can be used for interactive testing of the server by the

development team;
'N': no server at all, all functions are performed by direct system calls;
'T': a server written in iForth that can be used to connect a neighbour transputer to the

current transputer.

IFORTH REFERENCE MANUAL Page 62─ ─

iForth Appendices

II. OS Interfacing

Interfacing with the host operating system is done using the boot link. If you
play by the rules, it is possible to extend the messages that are recognized by the
communication mechanism over the boot link with messages of your own. This
means you have to extend IFORTH itself as well as the communication program
on the host, the so called server. (Under MS-DOS “boot link”, “host” and “server”
are mere software abstractions and can be bypassed using assembly language
definitions. See the documentation on INT10() and GO32).

To issue a command via the server you need to send the server a message. A
message consists of a series of bytes starting with the byte 255 (or $FF). Next
comes a byte to select the command category followed by a byte to select the
actual command. A number of arguments may then follow the command. After
sending the command IFORTH waits for the answer given by the server.

All other bytes sent are also commands in their own right.

There are currently 3 types of arguments:

• a byte (B);
• a 4 byte word (W);
• a counted string which is prepended by its length as a word (S).

The tables below gives all commands currently available on the standard server.
All commands not in this list are reserved for future use, except where noted.

Category: 0, STOP

There are no separate commands in this category. Upon receiving this command
header the server cleans up and exits.

IFORTH REFERENCE MANUAL Page 63─ ─

iForth Appendices

Category: 1, EXE

Num-
ber

Explanation
Arguments

0 Open an existing file
IN S Filename
IN W Open mode
OUT W File number
OUT W Error number

1 Execute a host OS command
IN S Command text

2 Execute an interactive shell on the host machine

3 Delete a file
IN S Filename

4 Truncate a file
IN W File number
IN W argument is ignored, must be 0
IN W File size

5 Flush buffers of one file
IN W File number
OUT W Error number

6 Create a new file
IN S Filename
IN W Open mode
OUT W File number
OUT W Error number

7 Close a file
IN W File number
OUT W Error number

8 Read a line from a file
IN W File number
IN W Buffer size
OUT S The read line
OUT W End of file flag
OUT W Error number

9 Read the current time
OUT W Seconds
OUT W Minutes
OUT W Hours

10 Read the current date
OUT W Day in month
OUT W Month

IFORTH REFERENCE MANUAL Page 64─ ─

iForth Appendices

Num-
ber

Explanation
Arguments

OUT W Year

11 Rename one file
IN S Original name
IN S New name
OUT W Error number

12 Move the filepointer of a file
IN W File number
IN W Type of movement
IN W Location
IN W argument is ignored, must be 0
OUT W New file pointer position
OUT W always 0
OUT W Error number

13 Read a fixed length string from a file
IN W File number
IN W requested size
OUT S Read data
OUT W Error number

14 Write a string into a file
IN W File number
IN S Data to be written
OUT W Actually written
OUT W Error number

15 Get server information
OUT W A single character indicating the type of server used.

16 Write a line of text into a file
IN W File number
IN S Line to be written (without newline)
OUT W Actually written
OUT W Error number

A newline character (or sequence) is appended to the text written.

17 Get processor info
OUT W The number of this processor
OUT W The number of processors in this network.

18 Read the current time and date
OUT W Day in month
OUT W Month
OUT W Year
OUT W Seconds
OUT W Minutes

IFORTH REFERENCE MANUAL Page 65─ ─

iForth Appendices

Num-
ber

Explanation
Arguments

OUT W Hours

19 Change the current directory
IN S The new directory name
OUT W Error number

Under MS-DOS a single drive name given as the directory name changes
the current drive.

20 Get directory name of current drive
OUT W Error number
OUT S Directory name

25 Transform error number to text
IN W Buffer address
IN W Buffer size
IN W Error number
OUT W Address
OUT W string count
OUT W Error number

26 Transform file number to file name
IN W Buffer address
IN W Buffer size
IN W File number
OUT W Buffer address
OUT W string count
OUT W Error number

Category: 2, TERM

Num-
ber

Explanation
Arguments

0 Read one character from the keyboard
OUT B The character (or 0 when none available)

1 Set the cursor to a location on the screen
IN W x-position
IN W y-position

2 Ask the location of the cursor on the screen
OUT W x-position
OUT W y-position

3 Set text attributes for the screen
IN W new attributes
IN W new background color
IN W new foreground color

IFORTH REFERENCE MANUAL Page 66─ ─

iForth Appendices

Any combination of the following attribute bits may be used (but they are
not guaranteed to work!):

Bit Function
1 High intensity
2 Low intensity
3 Italics
4 Underline
5 Blinking
6 Rapid blinking
7 Reverse video
8 Invisible

4 Ask the screen width
OUT W The number of columns on the screen

5 Ask the screen height
OUT W The number of lines on the screen

6 Ask the number of characters on the screen
OUT W The number of characters on the screen

7 No longer supported

8 No longer supported

9 No longer supported

10 No longer supported

11 No longer supported

12 No longer supported

13 Clear the screen from the current location to the end of the screen

14 Clear the screen from the current location to the end of the line

15 No longer supported

16 No longer supported

17 Test quickly whether a character is available
OUT B Flag

18 Ask the text screen mode
OUT B graphics, color or mono flag
OUT B cursor available flag
OUT B always 0
OUT B always 0

19 No longer supported

20 No longer supported

21 Write a text string to the screen
IN S String

22 Open the log file (Forth.log)

IFORTH REFERENCE MANUAL Page 67─ ─

iForth Appendices

23 Close the log file (Forth.log)

26 Calculate index for a given r,g,b value set.
IN W red value
IN W green value
IN W blue value
OUT W index in colour lookup table

27 Wait specified number of milliseconds
IN W ticks of 1 millisecond

28 Return number of milliseconds since initialization
OUT W ticks of 1 millisecond

29 Set cursor shape to OFF, CURSOR_OVERWRITE or CURSOR_INSERT
IN W 0 is off, 1 = overwrite, 2 is insert

Category: 3, USER

Num-
ber

Explanation
Arguments

0 Draw a line of pixels
IN W y start location
IN W x start location
IN W number of pixels
IN B... Colors of the pixels

1 Start graphics mode

2 No longer supported

3 No longer supported

4 No longer supported

5 Switch to text mode

6 Plot one point
IN W color
IN W y position
IN W x position

7 Draw a line
IN W color
IN W y1 location
IN W x1 location
IN W y2 location
IN W x2 location

8 Select next graphics mode (max resolution or max colors)
IN W flag

9 Discontinued

IFORTH REFERENCE MANUAL Page 68─ ─

iForth Appendices

10 Set up a new palette on the host graphics card
IN W Address of new palette
IN W Count of colour entries in palette

11 Get the current palette of the host graphics card
IN W Buffer address
IN W Count of entries expected

12 Request a text font for use in graphics mode
IN S name of font

Category: 4, FORTH

There are no separate commands in this category. This command has a single
string as an argument. This string is executed on a Forth interpreter running on
the host computer. If the server is not equipped to do so, the complete command
is ignored.

Category: 5, DATA

There are no separate commands in this category. This command has a single
string as an argument. This string contains data with no special encoding. This
packet format can be used to transport data over links that usually only carry
the server protocol. Its intended use is to concentrate data on the root
(transputer) so it can be displayed or written to a file. The PC server simply
ignores the data. Transputer servers may be configured to pass the data to the
next transputer or to operate on the data.

The categories 6 to 127 are reserved for future use by the DFW.
The categories 128 to 254 are free for use.
You may extend the terminal interface by using these categories, provided you
also modify the server on the other side. Contact the DFW for a source license of
the server.

Category: 255, FF

Print the byte 255 to the screen. This character must be send as a command
since it will otherwise be mistaken for a regular command.

All single byte characters are printed to the screen as characters except the
following bytes:

IFORTH REFERENCE MANUAL Page 69─ ─

iForth Appendices

Command
byte

Explanation

7, \a or BEL Ring the terminal bell, does not move the cursor.

8, \b or BS Erase one character on the screen, does not go past the left of the
screen, the cursor is moved one position to the left.

10, \n or NL Move the cursor to the next line, scroll when the cursor is on the
last line of the screen (column position does not change).

12, \f or FF Clear the screen, move the cursor to the topleft position.

13, \r or CR Move the cursor to the beginning of this line

IFORTH REFERENCE MANUAL Page 70─ ─

iForth Appendices

III. Literature

A. Hendrix, Marcel;
“F-4TH reference Manual”;
Weert, Holland, 1989

B. Ruzinsky, Steven A.;
“A simple Minimax Algorithm”;

in “Dr. Dobbs Journal”, volume 9, number 93, 1984

C. ANS X3J14 committee;
“Draft Proposed American National Standard: Programming Language
FORTH dpANS-5”

American National Standards Institute, BSR center,

11 W. 42nd St. 13 Floor NY, NY 10036 Manhattan Beach CA, USA, 1992

D. Forth Standards Team;
“Forth-83 Standard”;
Mountain View CA, USA, August 1983

E. intel, Osborne McGraw-Hill;
“i486 Microprocessor, Programmer’s Reference Manual”;
Intel Corporation, 1990

F. Woehr, Jack
“Forth: The New Model, A Programmer’s Handbook”
M&T Publishing, 1992

G. Brodie, Leo;
“Starting FORTH”;
Prentice-Hall International, Inc., London, 1981

H. Jyrki Yli-Nokari;
“Local Variables and Arguments”;
Forth Dimensions Vol XI, page 13.

IFORTH REFERENCE MANUAL Page 71─ ─

iForth Appendices

IV. Addresses
The author of iForth can be reached as follows:

Marcel Hendrix
Bressele-dijk 2
6024 CA Budel-Dorplein
The Netherlands
mhx@iae.nl (Marcel Hendrix)

Contact the Dutch Forth Workshop for Transputer (T8xx, T4xx) related Forths.
These parallel Forths are source code compatible with iForth (when no
transputer specific extensions are used). DFW also distributes the public domain
CHForth (16-bit 8088-80x86, source-code compatible with iForth) and an ANS
Forth for 8051-like processors.

For more information about the DFW write or call:

Dutch Forth Workshop
Boulevard Heuvelink 126
6828 KW Arnhem
The Netherlands
Tel: +31-26-4431305
BBS: +31-26-4422164

