
EP32 - a 32-bit Foth Micorprocessor 
 

Edvin Hjrtland 
Electrical and Computer Engineering Department 
South Dakota School of Mines and Technology 

Rapid City, U.S.A 
ehjortland@gmail.com 

Li Chen 
Electrical and Computer Engineering Department 

University of Saskatchewan 
Saskatoon, Canada 
li.chen@usask.ca

 
 
 

Abstract—This paper introduces a design of a 32-bit Forth 
microprocessor – EP32. It is a stack based processor, well suited 
for the Forth programming language. The instruction set 
includes 35 RISC-like instructions. The EP32 processor has two 
stacks: the data stack and the return stack which are 256 levels 
deep. The 32-bit Forth processor is designed in VHDL, and 
synthesized with a 0.18 µm standard CMOS library. The 
processor will be synthesized with a radiation-hard-by-design 
digital library in the future for space applications. 

Keywords-forth, microprocessor,  stack-based computer 

I.  INTRODUCTION 
Forth is used widely for programming embedded systems 

because of its simplicity and efficiency [1]. It explicitly 
manipulates data on a stack, and so defines a simple virtual 
machine architecture which makes programs independent of 
the CPU - only the interpreter needs to be ported [2]. Because 
of this, extra CPU features are wasted when running Forth 
programs, and since cost reduction is important to embedded 
systems, it is logical to want a simpler, cheaper CPU which 
runs only Forth programs.  

 
Forth processors use the minimum instruction set (MISC 

Instruction Set), which is similar to RISC. But it has even 
simpler instruction set, which usually has less than 32 
instructions [3]. The well-known MuP21 [4] is a 20 bit CPU 
which has 25 5-bit instructions and implemented in 1.2 mi-
cron CMOS process, uses only 7000 CMOS transistors and 
has a peak execution rate of 100 MIPS. A new configurable 
32-bit forth processor - EP32 is introduced to target for the 
applications in communication, high-end electronic games, 
and embedded control, where low power consumption and 
high execution speed are essential [5, 6].  

 
EP32 uses an RISC-like instruction set with 35 machine 

instructions. Its architecture has 35 6-bit instructions. Five 6-
bit instructions are packed into one 32-bit word, and are 
executed consecutively after a word is fetched from memory. 
It can be viewed as a 5-instruction cache that provides the 
optimal balance between the slow RAM and the fast CPU. 
EP32 has two stacks: the Parameter Stack and the Return 
Stack which are 256 levels deep. There are 31 primitive words 
created from 35 machine instructions.  

The paper is organized as follows. Section II gives a brief 
introduction to the instruction sets of the processor. Section III 
describes the architecture of the forth engine. The 
implementation of the design is presented in section IV. 
Evaluation results includes the chip layout are also presented in 
this section. Finally, section V concludes the paper. 

II. INSTRUCTION SET 
The CISC processors generally have 100 or more 

instructions. The RISC processors have about 50 instructions. It 
was obvious that 16 instructions are not sufficient to support all 
the necessary functions required in a microprocessor. 50 
instructions are too many for a forth engine using MISC. With 
6-bit instructions, it can provide a maximum of 64 instructions. 
EP32 has 35 6-bit instructions, which are listed in the Table 1. 
The instructions can be classed into four groups: transfer 
instructions for jump between addresses and subroutine 
operations, memory instructions for fetching the instructions 
from the memory, ALU instructions for arithmetic/logic 
operations on the operand, register instructions for data transfer 
between registers, and interrupt instructions for interrupt 
operations.  

 
ADD instruction is implemented but not subtraction, XOR 

instead of OR instruction and OVER but not SWAP. 
Obviously, subtraction can be synthesized by compliment and 
addition. OR can be synthesized by compliment, AND, and 
XOR. OVER and SWAP are very similar, in that they allow 
accessing the top of the data stack. It is difficult to determine 
which is more fundamental in a stack machine. 

Table 1: List of EP32 instructions. 

Type of Instructions Name of Instructions 
 

Transfer Instructions BRA, RET, BZ, BC, CALL, NXT, 
TIMES 

Memory Instructions LDC, LDRP, LDSP, LDI, LDX 
ALU Instructions RR8, STX, COM, SHL, SHR, XORR, 

ANDD, DIV, ADDD 
Register Instructions NOP, DROP, TX, PUSHR, OVER, 

DUP, XT, POPR, STC 

Interrupt Instructions EI, DI 

This work is supported  by  South Dakota State and NASA Seed grant. 

0840-7789/07/$25.00 ©2007 IEEE 
518



III. ARCHITECTURE OF THE PROCESSOR 

A. Genral Information 
Fig. 1 shows a block diagram of the EP32 CPU core. The 

address bus contains the 32-bit address vector provided by the 
CPU for memory and other I/O devices. The 32-bit data bus is 
used for transferring data between the CPU, memory and other 
I/O devices. For the CPU to support external interrupts, a 5-bit 
interrupt vector is included. This way the CPU supports up to 
31 different interrupt functions. The 6-bit icode vector contains 
the instruction code that is currently being executed. Since the 
EP32 has a 32-bit CPU core, the 4-bit byte_enable vector is 
included. The byte_enable vector keeps tracking of which the 
four bytes in the 32-bit word that are being processed. For 
example, if the first byte in the word is being processed, the 
byte_enable vector will be set to “0001”. However, if the third 
byte is being processed, the byte_enable vector will contain 
“0100”. If the whole word is being processed, all of the bits in 
byte_enable are simply set to ‘0’. The read and write signals 
are control signals to the memory. If the read signal is set high, 
the CPU will read from the memory. However, if the write 
signal is set ‘high’, the CPU will execute a write operation; 
hence the read and write signals can not be set to ‘high’ during 
the same clock cycle. The intack signal acknowledges an 
external interrupt, while the ack_o signal acknowledges the 
ready signal. 

  The EP32 has a set of six registers. An overview of the 
registers is shown in Table 2. All of the registers are 33 bits 
wide. The most significant bit of T register, T (32) is the carry 
produced by the 32-bit adder.  The carry bit preserved as data 
in T is transferred to other registers and to the stacks.  The 
preservation of carry bit greatly simplifies the logic processing 
of data, and allows interrupts to be serviced when the next 
program word is fetched from the memory, without having to 
save the carry bit and restore it on return. 

Table 2: List of EP32 registers with a short function description. 

Register Description  
X Address register, supplying address for memory (read and 

write) 
I Instruction latch, holding instructions to be executed 
P Program counter, pointing to the next program word in 

memory 
R Top of return stack 
S Top of data stack 
T Accumulator for ALU 

B. Architecture of EP32 
EP32 has two 256-deep stacks: S stack for data and R stack 

for return addresses. A stack is a typical LIFO structure. LIFO 
stands for last in - first out, and refers to the way items stored in 
a data structure are processed. The last data to be added to the 
structure will be the first data to be removed. The data width of 
both stacks is 33-bit wide to preserve the carry bit produced by 
the ALU.  The return stack is mainly used to preserve return 
addresses on subroutine calls, and store local variables. The 
data stack is used to pass parameters among the nested 
subroutine calls. With these two stacks in the CPU, EP32 is 
optimized to support the Forth programming language. 

 

Fig. 1: Block diagram of EP32 CPU Core. 

 

 
Fig. 2: Simplified dataflow chart of EP32 CPU core. The control unit and 
several multiplexers and control signals are not shown in the diagram. 

EP32 provides a mini-RISC like instruction set of 35 
instructions. Five 6-bit instructions are packed into one 32-bit 
word, and are executed consecutively after a word is fetched 
from memory. It functions as a 5-instruction cache which 
provides the optimal balance between the slow RAM and the 
fast CPU.  32-bit words are fetched from RAM at a rate of 20 
MHz, and the 6-bit instructions are executed at a rate of 100 
MIPS. A 6-bit instruction field can accommodate 64 different 
instructions. Since only 35 instructions are defined in the 
VHDL description, there will be many available instruction 
slots for future use if necessary. Fig. 2 shows a simplified data 
path diagram of the EP32 CPU core. The control unit and 
several multiplexers that select the signal going into various 
registers are not shown in the diagram.  

The instruction decoding logic applies the proper control 
signals for registers and multiplexers. Table 3 shows some of 
the control signals which are directly affected by the control 
logic. Other select signals for various multiplexers are also 
affected, but these signals are not defined by name in the 
VHDL description. The synchronous program execution clocks 
the aslot signal, which selects the next 6-bit instruction in the I-
register to be executed. Depending on the instruction, the 
proper value of the control signals in Table 2 will be generated. 
At rising clock edge the selected data are latched into the 
registers and stacks. All signals must be stabilized before the 
next rising clock edge. The slot0 signal acknowledges the 
processor when all the instructions in the I-register have been 
executed. Fig. 3 shows the relation between the master clock 
and the slot0 signal. When the aslot counter is 0, the slot0 
signal is set high, and a new instruction word needs to be 

519



fetched from memory. Instructions are being executed 
consequently until the aslot counter reaches 5. When the aslot 
counter reaches 5, it is reset to 0, and a new instruction word is 
fetched from memory. However, if the first instruction in the I-
register is some kind of branch or jump instruction, the CPU 
will need to fetch a new instruction word from memory 
consequently. The relation between the master clock and the 
slot0 signal when a branch or jump instruction is executed is 
shown in Fig. 4. 

IV. IMPLEMENTATION  METHOLOGY AND IMPLEMENTATION 

The original VHDL description of the EP32 microprocessor 
targeted to FPGA applications was provided by Signal 
Processing and Microelectronics Branch, Goddard Space Flight 
Center, NASA. We modified and verified the design so that it 
can be implemented as an ASIC design. Testbenches were also 
developed for each level of the design. TSMC 0.18µm CMOS 
standard library is used for synthesizing and implementation. In 
this section, firstly we discuss the design of the stack, including 
simulation results. Then the implementation of the EP32 block 
is described, simulation results will also be included. Finally 
the layout of the chip is presented. All the tools that were used 
in this design flow are included in the ADK 3.1 (ASIC design 
kit) package from Mentor Graphics. 

A. Implementation of Stacks 

According to design recommendations of the 
LeonardoSpectrum user’s manual, the VHDL description for 
the stack was revised to accommodate it. These 
recommendations suggest separating the code into smaller sub-
blocks. This includes placing similar logic together, i.e., state 
machines, datapath logic, decoder logic etc. State machines 
should also be placed into separate blocks of hierarchy to speed 
up the optimization process, and provide more control over 
encoding. By following these rules, LeonardoSpectrum can 
more easily generate an efficient netlist. Both the R and S 
stacks are partitioned into stack cells, whose block diagram is 
shown in Fig. 5. The floorplan and connections of stack cells 
are shown In Fig. 6(a). The Layout of the stack are shown in 
Fig. 6(b). The physical layout was created with IC Station of 
Mentor Graphics. IC Station supports autoplacement and 
routing, which simplified the physical layout process. 

 
Fig. 3: Relation between the master clock and the slot0 signal of the EP32 when 
operating normally. 

 
Fig. 4: Relation between master clock and slot0 signal when branch or jump 
instruction is executed. 

 

Table 3: List of control signals of EP32. 

Signal Description 
Rst Master reset 
t_load If set, t_in is loaded into T register 
r_load If set, r_in is loaded into R register 
x_load If set, x_in is loaded into X register 
i_load If set, i_in is loaded into I register 

p_load If set, p_in is loaded into P register 
Spopp If set, pop the data stack 
Spush If set, push T onto the data stack 
Rpopp If set, pop the return stack 
Rpush If set, push R onto return stack 
Aslot Instruction slot counter. Counts from 0 to 5, depending 

on which instruction in I to be executed 
adder_sel 2-bit vector selecting first input of the ALU 
argument_sel 2-bit vector selecting second input of the ALU 
slot0 If set, fetch new instruction word from memory 

 

     
Fig. 5: Architecture of the stack design that are divided into simple stack cells. 
Both the return stack and the data stack are using this architecture. 
 

    
 (a)    (b) 
Fig. 6: (a) Floor plan of the stack cells. The blue fields between the stack cells 
indicate connection between the cells. (b) Layout of the stack. 

B. Implementation of the EP32 Block 
The synthesis process for the EP32 block is very similar to 

the synthesis process for the stacks. The VHDL description of 
the stack and the EP32 were loaded into the in-memory 
database of LeonardoSpectrum. The stacks are treated as black 
boxes. The EP32 file was analyzed, elaborated and pre-
optimized. The in-memory database was optimized using the 
same technology as before, at a clock frequency of 100 MHz. 
The timing report indicates that the EP32 block can handle 
clock frequencies up to 113 MHz. This is a drastic drop in the 
frequency compared to that of the stack cells and whole stack. 
This is due to much longer combinational logic paths between 
registers in the control and datapath logic of EP32; compared to 

520



the stack design, where only one multiplexer separates the 
registers. Fig. 7 shows the final layout of the EP32.  

 
Fig.7: Physical layout of the EP32 block. The layout is build up by 81135 
transistors, and the size is 1550x1500 µm. 

C. Verifications 
Functional verification is performed for each sub-block of 

the design. A testbench which includes all the instructions has 
been written in VHDL to verify the functionality of the EP32 
CPU core. The testbench uses all the instructions at least one 
time; however, most of the instructions are used several times 
which improves the reliability of the testbench. The testbench 
has been used to do functional simulation as well as timing 
simulation for EP32.  

 
The after-synthesis simulation of the EP32 block was 

executed by loading all the generated Verilog netlists into a 
project using Modelsim. The SDF-files were linked up to their 
respective components to include SDF timing information. 

The clock frequency is set to be 100 MHz. The design has 
been verified to be functional correctly.  

V. CONCLUSIONS 
This paper introduces a 32-bit forth microprocessor design, 

well suited for the Forth programming language. This Forth 
engine architecture provides high speed and high volume 
processing capability required for synthetic-aperture radar 
(SAR) signal processing and image processing. The design 
coded with VHDL has been successfully synthesized and 
implemented to an ASIC test chip with a commercial TSMC 
0.18 µm CMOS technology. It is planed to design a radiation-
hardened version of the EP32 CPU with a radiation-hardened 
library in the future. 

ACKNOWLEDGMENT 
The authors would like to thank Umesh Patel with Goddard 

Space Flight Center, NASA for providing the original design of 
the EP32 and the technical support for this project. We also 
would like to thank NASA and the South Dakota state for 
sponsoring this project.  

REFERENCES 
[1] E. D. Rather   D. R. Colburn   C. H. Moore, “The evolution of Forth,” 

The second ACM SIGPLAN conference on History of programming 
languages,  1993, pp. 177 - 199. 

[2] P. Koopman, Stack Computers: the New Wave, Ellis Horwood, 1989. 
[3] P.H.W. Leong, P.K. Tsang & T.K. Lee, “A FPGA Based Forth 

Microprocessor,” Proceedings of IEEE Symposium on FPGAs for 
Custom Computing Machines, 1998, pp. 254-255.  

[4] C. Ting and C. H. Moore, “MPU21 – A High Performance MISC 
Processor,” Forth Dimension, January 1995. 

[5] R.K. Bardin, “Architectures for High-speed Processing”, Proceedings of 
the 1987 Rochester Forth Conference, 1987, vol. 5, no. 1, pp. 83- 86. 

[6] J.R. Hayes, M. Faeman, R. Williums, T. Zareman, “a 32-BIT Forth 
Microprocessor” Proceedings of 1987 Rochester Forth Conference, vol. 
5, no. 1, 1987, pp. 39-48. 

 

 

521


