
Some programmers question certain claims made for
threaded-code systems. The author defends these claims by
tracing such a system from its origin in simple concepts.
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Interest in software systems based on threaded-code
concepts has grown remarkably in recent years. Ad-
vocates of such systems regularly make claims for them
that many classical programmers regard as bordering on
the impossible. Typically, proponents claim that it is
possible to construct, in 5K to 10K bytes of code, a soft-
ware package that

* is conversational like APL, Lisp, or Basic;
* includes a compile facility with many high-order

language, structured-programming constructs;
* exhibits performance very close to that of machine-
coded program equivalents;

* is written largely in itself and consequently is largely
portable;

* places no barriers among combinations of system,
compiler, or application code;

* can include an integrated, user-controlled virtual
memory system for source text and data files;

* permits easy user definition of new data types and
structures; and

* can be extended to include new commands written
either in terms of existing commands or in the
underlying machine language (an assembler for the
underlying machine can be implemented in as little as
a page of text of existing commands).

Such systems do exist-Forth is perhaps the best
known-and have attracted widespread attention, as
evidenced by countless implementations, publications,
products, and standards groups.
The purpose of this article is to convince the skeptic

that these claims are, in fact, achievable without resorting
to obscure software magic or arm-waving. The approach
is to build a logical (not historical) trail from some rather
simple concepts to the outlines of a software system that
meets the above claims. A series of generalizations added
to a simple view of software leads to the final result, a
package approaching the combination of

* a simple instruction-set architecture, or ISA;

* the concepts and syntax of a high-order language, or
HOL; and

* a set of commands for a conversational monitor.

The ISA (such as it is) is for an abstract machine that is
very efficiently implemented by short code segments in
almost any current machine architecture. The HOL con-
cepts include hierarchical construction of programs,
block structures, GOTOless programming, and user-
definable data structures. The commands for the conver-
sational monitor permit direct interaction with objects
defined by the programmer in terms he defines, not sim-
ply in the terms of the underlying machine (i.e., core
dumps). Further, the command set is directly executable
in a conversational mode and includes virtually all com-
mands available in the system; when so executed, they
function just as they would if found in an executed pro-
gram. Finally, programs defined by the programmer are
automatically part of the system's set and can be used in
any combination with other commands in either a conver-
sational or program-definition mode. This permits a pro-
grammer to develop application-oriented interfaces that
are compatible with and run as efficiently as the basic
monitor commands.
Much argument exists as to whether these results define

a machine, a language, an architecture, a system, etc. We
sidestep this issue by declaring it to be a self-extendable
software package.

Discussion base

One of the major tenets of modern software develop-
ment is the value of modular, structured solutions to
problems. In such solutions, the final product is a hierar-
chy of procedures or subroutines, each with well defined
interfaces and short, easily understood bodies that exhibit
minimum side-effects.
When written in either assembly or higher-order lan-

guage, such structured applications tend to look like this:
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APPLICATION

INPUT

PROCESS

CALL
CALL
CALL
CALL

CALL
CALL
CALL

CALL
CALL
CALL

INITIALIZE
INPUT
PROCESS
OUTPUT

OPEN
READ
CLOSE

STEP 1
STEP 2
STEP 3

(Code that handles passing of operands has been
deliberately ignored for the present; it will be discussed
later.)
The key thing about such "programs" is that they

largely consist of addresses of procedures, with each ad-
dress preceded by a CALL opcode.

Generalization 1: Removal of opcode. Consider first
programs at the next-to-last level of such a hierarchy,
those in which all called routines are actually pure
machine code with no further nested calls. One way to
simplify representation of such programs is to replace the
list of call instructions with a simple list of addresses; a
very small machine-language routine would go through this
list sequentially, making indirect branches at each step.
This clearly reduces storage at some cost in performance
but, by itself, seems to yield nothing else. The benefits of
this move will be brought out in later generalizations.
As an example, assume that Steps 1 to 3 above are pure

machine code. Thus, PROCESS could be replaced by:

PROCESS I -Address of pointer to
first step (i.e., PLIST)
Branch to NEXT

PLIST DW STEP 1
DW STEP 2
DW STEP 3

Register I points to the next address in the list of pro-
cedures to be executed, and W contains that address.
Figure la summarizes their relationship.

Generalization 2: Higher levels in the hierarchy. This
same technique can be used at higher levels in the hierar-
chy by using a stack to keep track of I values and by
preceding each procedure that is above the next-to-last
level with a piece of code that stacks the current value of I
and resets it to the new list. A new entry is added at the end
of each procedure list; it points to a routine that pops the
stack to retrieve the I value of the procedure's caller.

INPUT Push I to STACK
I-NEW LIST
Branch to NEXT

NEW LIST DW OPEN
DW READ
DW CLOSE

New prologue

Define each word
as an address

DW RETURN
RETURN Pop from STACK to I

Branch to NEXT

This stack is often called the return stack.
This technique effectively reverses the position of the

information that tells the machine it is entering a new pro-
cedure. In the classical approach, the opcodes associated
with the addresses are interpreted before the change to a
new procedure. In the above approach, the prologue code
serves the same functiorl, but is invoked after the address
in the list has been used. What has been defined is, in ef-
fect, a mechanism for a called routine to determine what
kind of routine it is and how to save the return informa-
tion; in contrast, the classical approach demands that the
calling procedure provide this information. In a sense, the
machine does not know what kind of routine it is entering
until it gets there. This self-definition capability is the
keystone for many of the capabilities to be discussed
below.

STEP i Code
Branch to NEXT

NEXT W-Memory(I) Machine code to start se-
I-I + I quencing through list. I
Branch to (W) points successively to each

entry.

The code at the beginning of PROCESS is termed its
prologue. In each of the called steps, any RETURN in-
structions would be replaced by a branch to NEXT.

In the literature, this threading of a sequence of sub-
routines into a list of their entry addresses is termed direct
threaded code, or DTC. The small routine NEXT is
termed an address interpreter (it has also been called an
inner interpreter). In many architectures, it is a single
"jump indirect with post increment" instruction.
By convention, I and W (as well as X, Y, and TABLE,

to be introduced later) are assumed to be registers or dedi-
cated memory locations of the underlying machine.
Through the address interpreter sequences of the ma-
chine, these registers or locations direct the machine to
carry out the appropriate procedures.

Generalization 3: Commonality of prologue. As de-
fined above, every single procedure constructed from a
list of calls to other procedures must have its own carbon
copy of the prologue code. A programmer's typical
response to such a situation is to look for ways ofavoiding
this duplication. In one common approach, he stores at
the entry point of the procedure not a copy of the pro-
logue code, but the address of a single routine that carries
out the function of the prologue code. Thus, all pro-
cedures that use the same prologue start with an address
that points to the actual routine.

Placement of an address rather than actual code at the
entry to a procedure requires a change in the address inter-
preter. Instead of branching directly to the start of the
next procedure, the address interpreter must branch in-
directly through the first word of that procedure. This
corresponds to something like the following:

NEXT W-MEMORY (I)
I-I+1
X-Memory (W)
Branch to (X)
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If a procedure really is to be implemented in machine
code, the address at its entry typically points to the very
next word.

Figure lb summarizes the relation between I, W, and
X, and Figure 2 diagrams a fairly complex case. The pro-
logue is called ENTER; EXIT is the procedure to return to
the caller. One important aspect of this is that most of the
code is largely machine-independent. Only at the lowest
level do we see real machine/architecture dependencies.
All other levels use addresses, which can conceivably be
transported unchanged to another machine with an en-
tirely different architecture.

Code written for this new address interpreter is often
called indirect threaded code, or ITC. It is slightly slower
than the earlier version, but provides savings in storage
and machine independence and permits some of the in-
teresting generalizations discussed below. If more speed is
desired, this function and that of any of the other address
interpreters can be microcoded or added to the hardware
of the underlying machine.

Figure 1. Types of address interpreters (or, Where is the machine
code now?): (a) direct threaded code, (b) indirect threaded code, and
(c) indirect token-threaded code.

The word addressed by W is the prologue address
pointer, or PAP (very often referred to as the code ad-
dress wordor CAW). Again, Wis the address of the PAP.
In the above description ofNEXT, Xis the contents ofthe
PAP. This value is the address of the prologue machine
code for the new procedure.
A variation of this approach replaces this entry address

PAP with a token, which serves as an index into a table of
possible prologue codes. This adds one more level of in-
direction to the address interpreter, but provides even
more machine independence to the total program. The
technique is often called indirect token-threaded code, or
ITTC. Figure lc diagrams it in more detail. Table 1 com-
pares DTC, ITC, and ITTC.

Generalization 4: A parameter stack. These lists of ad-
dresses are beginning to resemble a program in an ISA,
where each instruction consists of only an opcode-the
address of a routine. What is needed to help complete this
ISA is some way to pass operands. The simplest such
mechanism-one used in many other ISAs that have no

explicit operand specifiers-is a second stack. Any in-
struction that needs operands as inputs takes them from
the top of this stack; any data produced goes back onto
the stack, which is commonly called the parameter stack.
It is distinct from the return stack discussed above.
As a trivial example, the machine code for a procedure

to add two numbers looks like this:

ADD DW * +1
Pop PSTACK to Z
Pop PSTACK to Y
Add Z to Y
Push Y to PSTACK
Branch to NEXT

Prologue address pointer
Get operand

Do operation
Save result

The PAP points to the actual machine code. This, in turn,
pops two values off the stack, adds them, and returns the
result. The asterisk marks the address of the current loca-
tion Thus, * + 1 points to one location beyond the PAP.
Many actual stack-oriented ISAs keep all information

on a single stack; the advantage of two stacks lies in both
simplicity of implementation and the reduced conceptual
complexity they present to a human programmer. Oper-
ands are always found on the parameter stack and pro-
cedure call information on the return stack. The advan-
tage of this will become increasingly apparent to the
reader in the following sections.

Generalization 5: Reverse Polish notation. Existence of
a parameter stack permits use of reverse Polish notation,

Table 1.
Comparison of DTC, ITC, ITTC.

TYPE OF
ADDRESS

INTERPRETER
DTC
ITC
ITTC

VALUE OF INTERPRETER
REGISTERS
W X Y

100 200 - -
100 200 300 -
100 200 30 300

24

ADDRESS OF
EXECUTED

MACHINE CODE

200
300
300

COMPUTER

EXECUTING
PROCEDURE:

*. 100 200 3_ W

ADDRESS INTERPRETER
NEXT: W-MEMORY (I)

1-1+1

(a)
BRANCH TO W

200: ACT UAL
MACHINE
CODE

.

EXECUTING
PROCEDU RE:

I......t 100 200 - 200 PAP 300

ADDRESS INTERPRETER ACTUAL
NEXT: W-MEMORY (I) MACHINE

1-1+1 CODE
X-MEMORY (W)
BRANCH TO X

,b)

EXECUTING
PROCEDURE.

* 100 200 - 200 | TOKEN: 30

TABLE OF
ADDRESS INTERPRETER l PROLOGUE
NEXT: W-MEMORY (1) 30 BRANCH

1-1+1 ADDRESSES
X-MEMORY (W)
Y-TABLE (X) - -__ _

,c) BRANCH TO Y _ 300 300:ACTUAL
MACHINE
CODE

(I

(I



or RPN, for specification of series of operations. In the
written form of such a notation, operands come before
the operations and evaluation proceeds left to right, one
operation at a time. There are no parentheses, and no
precedence is given to one operator over another. This
notation is used in solving problems on many calculators.
As an example, consider the polynomial evaluation

AT2+BT+C=(AT+B)T+C

When expressed in a written RPN, this becomes

AT*B+T*C+

Such an expression is read from left to right in the follow-
ing manner:

(1) Put A on the stack.
(2) Put Ton the stack.
(3) Multiply the top two entries (A and T).
(4) Put B on the stack.
(5) Add the top two entries (A Tand B).
(6) Put Ton the stack.
(7) Multiply the top two entries (A T+ B and T).
(8) Put C on the stack.
(9) Add the top two entries ((A T+B)Tand C).

If we could come up with a way of defining threaded-
code procedures to access A, B, C, and T, the above com-
putation could be carried out by a series of nine addresses
in exactly the above order. No general registers, accum-
ulators, or other constructs would be needed. This
simplification is the key to maintaining the concise user
interface described below.

Generalization 6: Named entities. Despite the advan-
tages of parameter stacks and reverse Polish notation, in
many classical programs and programming languages a
need remains for binding the values of named variables,
arrays, records, etc., to explicit storage locations that are
less transient than entries on a stack. These can be added
to our developing threaded-code architecture by defining
special prologue routines that use information from the
address interpreter, namely address W of the PAP, to
identify unique storage locations.
As an example, a procedure that delivers a constant to

the parameter stack might have two entries: the PAP
pointing to a special prologue and a word holding the
desired value. The prologue code might look like this:

CONSTANT Z-Memory(W +1)
Push Z to PSTACK
Branch to NEXT

Get the value
Push it

Again, as many constants as needed can be defined.
Each will have its unique value, but will contain a PAP
pointer to the same prologue.

Cases in which the values change frequently can be
handled similarly; such structures are called variables.
Here the prologue code stacks not the contents of location
W+ 1 but its address:

VARIABLE Z-W+I
Push Z to PSTACK
Branch to NEXT

To find the value of a variable, a second procedure
must be called. This procedure, often called @ (AT), uses
the top entry of the stack as an address and replaces it with

Figure 2. Indirect threaced code. Asterisk marks address of this memory location.
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the value of that location. If defined as a machine-coded
primitive, it might look like this:

AT DW*+1
Pop PSTACK to Z
Y-Memory (Z)
Push Y to PSTACK
Branch to NEXT

PAP

Changing the value of a variable also requires a new
procedure, often called ! (STORE). This procedure
removes two operands from the parameter stack; one is
the value; the other the address, as delivered by an earlier
VARIABLE. Defined in machine code, it would look like
this:

STORE DW*+ l PAP
Pop PSTACK to Z Get address
Pop PSTACK to Y Get new value
Memory (Z)-Y Save it
Branch to NEXT

The important concept behind CONSTANT and VAR-
IABLE, as defined above, is that the access to a data
structure can be defined as a prologue code that is both
addressed by the PAP and works on a data area starting at
location W+ 1 (one word beyond the PAP). Under this
definition, it is possible to define any kind of a data struc-
ture. For example an array procedure could use the top of
the parameter stack as an index, the contents ofW+ 1 as a
dimension limit, and W+ 2 as the start of the body of the
array. The prologue code referenced at the beginning of
an array definition might look like this:

top of the stack is nonzero, the operation increments I
over the displacement. If the ITC address interpreter is
used, then I, in the body of branch, points to the dis-
placement directly.

I BRANCHO-
DISP Pop PSTACK to Z

If Z = 0 then
I-I + Memory(I)
else I -I + 1
Branch to NEXT }

PAP
Machine
code
for
Branch on 0.

The above branch and its variations are equivalent to
what is found in most classical ISAs. Another form, par-
ticularly useful for loops, is a conditional procedure exit.
It pops the return stack into I only if the top of the
parameter stack is zero. Otherwise, the return stack is left
untouched. Coupled with this are procedures to mark the
return stack with an address for future use by this condi-
tional return.

Yet another form would be a conditional procedure
call:

I CALLO-
FOO

* + I
Pop PSTACK to Z.
If Z 0 then
Push I + 1 to RSTACK
I -Memory(I)
else I - I + 1
Branch to NEXT

ARRAY Pop PSTACK to Z
If Memory(W + 1) <Z
then error
Y-W+2+Z
Push Y to PSTACK
Branch to NEXT

Get index

Get address of array (Z)
Save it

Extensions of this allow a user to define any kind of a data
structure he might need and integrate it very cleanly with
the rest of the architecture via the common parameter
stack.

A detailed example

At this point, we review the concepts developed above
by illustrating them in a detailed example. Figure 3
diagrams a hierarchy of procedures and codes needed to
support polynomial evaluation as defined earlier. As-
sume that, at entry, Tis at the top of the parameter stack,
A is a constant, B is a variable, C is the third element in an
array, and the result is to be placed in the variable Z.

Generalization 7: Conditional operators. So far, we
have included no capability for decision-making and con-
ditional processing. While this is not hard to add, there
are several possibilities to consider. The simplest and
most common is to invent a branch-on-zero procedure.
This rather elementary operation tests the top of the
parameter stack, and if it is zero, replaces the current
value of I by the sum of I and the contents of the word
following the original call to the branch procedure. If the

Here, FO is executed only if the top of the parameter
stack is zero.

Variations of this approach handle IF-THEN-ELSE
and similar construicts directly, with the bodies of the
THEN and ELSE defined as separate procedures.

Generalization 8: Iterative loops. The constructs de-
scribed above are sufficient for handling not only IF-
THEN-ELSE structures, but also DO-WHILE and
UNTIL-DO forms of loops. Iteration loops (e.g., DO
K = 1, 10) can also be handled, but variables or some other
construct must be used to hold the iteration variable (the
one whose value changes once for each iteration of the
loop).
A rather elegant construct for iterative loops uses the

return stack to hold the iteration variable and its limits.
Before entering the loops, the appropriate values are
pushed onto the return stack; after each iteration, the
values on top of the return stack are incremented by the
appropriate amount and compared with limits. If the loop
is to be executed, the modified iteration value remains on
the return stack. Completion of the loop causes these en-
tries to be removed from the return stack. Such a con-
struct is inherently reentrant and nestable to any level.

Given that procedures exist for moving values between
the two stacks, any of the mechanisms described above
can be used for the test and branch back. Alternatively,
the whole process of loop control can be buried in a single
procedure that does iteration variable modification, test,
and branch back.
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Access to the iteration variable can be obtained by sim-
ple procedures that copy from the top of the return stack
to the parameter stack. Such facilities are provided in
many threaded-code systems.

Partial summary. What we have so far is the outline of
the architecture of a simple ISA that has

* an indirect code access mechanism,
* two stacks,
* reverse Polish notation,
* user-definable data structures,
* extensible operations,
* a hierarchical framework, and
* the ability to directly support many HOL constructs.

An application written in such a system would consist
of

* a small set of small prologue routines;
* a basic set of procedures written in the ISA of the

underlying machine; and
* a set of procedures constructed from pointers to pro-

logues and sequences of addresses pointing to either
this set or the basic set of procedures.

There is a performance difference between this and an
application written totally in the underlying machine's

ISA. It consists of the costs of the address interpreter and
prologue codes and the possible loss of machine register
optimization for parameter passing. The cost of the first
two items tends to be small for many modern ISAs; that of
the third must be weighed against the standards imposed
for procedure calls (such as register saves and restores) in
many software systems and the less than optimal code
produced by many compilers and programmers required
to produce a great deal of code.
Benchmarks show typical performance penalties for

threaded-code versus direct assembly coding to run in the
range of 2:1 for eight-bit microprocessors and 1.2:1 for
minicomputers. This is in contrast to orders-of-mag-
nitude loss when more conventional interpreters (such as
those for Basic) are used.

This small loss in performance is usually countered by a
decrease in program size and a gain in machine in-
dependence. The only machine-dependent parts of an ap-
plication package are the prologue code and basic pro-
cedure set, each of which is relatively easy to transport to a
different machine. The bulk of the application consists of
addresses, which can, conceivably, be transported intact
to another machine.
While these results meet some of the claims listed in the

introduction, they do not address others. Compile capa-

Figure 3. Procedure for polynomial evaluation; a detailed example that incorporates generalizations 1 through 6.
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bility and interactiveness, for example, can only be
achieved through certain programs that can be written in
the architecture. The following subsections develop these
programs and related concepts.

Generalization 9: The dictionary. The first step toward
making a collection of threaded-code procedures interac-
tive with a human is to provide some mechanism to trans-
late the symbolic name of a procedure into its definition
as a PAP and body. The simplest and most common
mechanism is to precede each stored PAP with three
items:

* the symbolic name of the procedure as a character
string;

* a pointer to another procedure's name; and
* certain other information that is relevant at compile

time.

The pointer field is used to link the names of the pro-
cedure set together in a list, called a dictionary. Starting
with a symbolic name, a search of this dictionary can
return a pointer to the appropriate PAP and body. All the
standard search speed-up techniques, such as hash tables,
are applicable and have been used in various systems.
Figure 4 diagrams part of a possible dictionary.

The text interpreter. The combination of a dictionary
and the text interpreter (sometimes called the outer inter-

Figure 4. Sample dictionary format.

preter) forms the basis of an interactive computing
capability. The text interpreter is a simple program that
accepts input characters from a terminal; as soon as a
name is complete, it searches the dictionary for a match.
If one is found, the entry in the dictionary can be ex-
ecuted. If no match is found, the program attempts to
determine whether or not the name is a number. If it is, its
translated value is left on the parameter stack. If not, an
error message is sent. In either case, the text interpreter
then returns for more input.
The text interpreter is extremely simple, but has two key

aspects that give it a true interactive capability. First, the
program is designed so that when it actually executes a
user-specified procedure, there is nothing from the text
interpreter on either the parameter stack or the return
stack. The user therefore perceives both stacks as his and
feels free to store information on them. Second, pro-
cedures are executed in the order in which they are typed
in, from left to right. Thus, when a reverse Polish nota-
tion is used to express a computation, it corresponds ex-
actly to the equivalent sequence of procedure names to be
typed into the text interpreter. Thus, the sequence 10 20 30
* + PRINT enters 10, 20, and 30 onto the parameter
stack, multiplies 20 by 30, adds 10 to the product, and uses
the procedure PRINT to print the results.

In contrast, most other interactive systems, such as
BASIC and APL, require significant syntactic processing
on whole lines of text before execution can begin. There is
no need for equivalent syntactic analysis in this system.

Generalization 10: The compile state. Since the system
has no need for syntactic analysis, it is possible to imple-
ment a one-pass compile facility. Basically, when this
facility is triggered by a user command, it establishes the
name of a new procedure in the dictionary. Then, instead
of executing the subsequent procedure name inputs, it
simply stores the addresses of their PAPs in successive
locations of the body of the new procedure. Detection of
a termination command completes the compilation and
returns the text interpreter to its normal state.

This compilation facility is typically implemented by
modifying the text interpreter such that it has two states
and then defining two procedures to govern transitions
between states. State zero corresponds to the execution
state, in which detection of a procedure name in the input
stream causes immediate execution of its PAP and body.
In state one, the compile state, detection of most pro-
cedure names causes not their execution, but simply the
addition of a copy of the address of their PAPs to the
body of a new procedure definition.

In many systems, the two special state-controlling pro-
cedures have the symbolic names : and ;. The procedure:
(DEFINE), when executed, uses the next symbolic name
from the input stream not in a dictionary search, but as
the information needed to start a new dictionary entry.
This new entry is linked to the previous dictionary entries
in the appropriate fashion and is given a PAP that points
to the ENTER prologue. The body is left open, and the
state of the outer interpreter is set to one.

After execution of a :, the outer interpreter takes names
from the input stream, looks up each in the dictionary,
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and (with certain exceptions) adds a copy of the address of
its PAP to the new entry. This is an incremental compila-
tion.
The procedure; (END-DEFINE) is an example of a set

of procedures that should be executed even in compile
state. A typical way to make this determination is to in-
clude in each dictionary definition aprecedence bit. If the
bit is a one, it implies that the procedure should be ex-
ecuted in either state; if zero, it implies that it should be
executed only in the execute state.

This precedence bit is set in the definition of ;. Thus,
when ; is encountered in the input stream, it is always ex-
ecuted. Its execution causes completion of the current
definition by adding a final address to the EXIT pro-
cedure (used in the previous examples) and by resetting
the interpreter state to zero.
As an example, the following text is sufficient to define

the polynomial evaluation routine shown in Figure 3.

: POLY DUP A * B @ + * 3 C @ + Z !;

The new procedure's name is POLY; assume that
previous definitions have set up A, B, C, and Z as earlier
defined. Figure 5 diagrams the changes in state and dic-
tionary as this input stream is encountered.

Finally, Figure 6 is a flowchart of the text interpreter.
The part in the dashed box is the entire code needed to
achieve a basic compile facility. All of these procedures
can themselves be defined (or redefined dynamically by
the user) by a ...; procedure. For example, the entire text
interpreter procedure can be written comprehensibly in
six lines of source text (not counting the lower-level pro-
cedures it calls).

Generalization 11: Structured code. The ability to exe-
ctue procedures during compilation of another gives the
system a powerful macro-like capability. Perhaps the
most useful of such "macros" are those that implement
most of the block structures found in many HOLs. Con-

Figure 5. Sample compilation.

Figure 6. Text interpreter with compile facility. Dotted box contains all basic compile functions.
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sider, for example, the following definition:

:TEST X @ <0 IF OX ! ELSE Z @ X! ENDIF;

Test X Then Else
for <0 Part Part

This tests the variable X. If Xis less than zero, the defini-
tion zeros X. IfX is not negative, it sets X to the current
value of Z.
Of the words used in this definition, IF, ELSE, and

ENDIF all have their precedence bits set, which means

that they are executed during compile time. Typical
definitions of each are as follows:

(1) IF. At compile time, this procedure adds to the cur-

rent definition a pointer to the BRANCHO procedure. It

Figure 7. Sample compilation of the if-then-else block.

Figure 8. Sample machine-coded procedure.

also leaves on the parameter stack the address of the
memory word that follows the BRANCHO. This word
should contain the displacement to the beginning of the
ELSE code, but since the ELSE has not yet been en-

countered, it cannot be filled in. The parameter stack is a
convenient place to store a marker noting this fact.

(2) ELSE. When ELSE is encountered, all the code
for the THEN part of the IF-THEN-ELSE structure has
been compiled. The ELSE procedure thus codes into the
new definition the address of a BRANCH procedure,
which should branch around the as yet undefined ELSE
code. Again, since this displacement is not known, the
ELSE procedure leaves on the parameter stack the ad-
dress of the word that is to contain the displacement. Fur-
ther, it takes the previous top of the parameter stack (the
address of the displacement left from IF) and fills in the
specified location with a displacement to the next free
word in the new definition.

(3) ENDIF. When this is encountered, the IF-THEN-
ELSE is complete. No new code is generated; instead, the
branch at the end of the THEN code is fixed up. Again,
the address of the word to be modified is on the parameter
stack at compile time.

Figure 7 diagrams this process in action. The parameter
stack is used at compile time to hold compiler-relevant
data. One of the key advantages of using a stack is that
these IF-THEN-ELSE blocks can be nested; the algo-
rithms, as specified, handle the nesting just as one would
expect.

Similar constructs can implement virtually all of the
other block structures found in most HOLs, such as DO-
UNTIL, DO-LOOP, and BEGIN-END. Their defini-
tions are simple enough for a user to understand and even
modify.

Generalization 12: Defining machine-coded pro-
cedures. One of the advantages of having the PAP iden-
tify the procedure type is that this makes it possible to
design and debug an entire application in a totally
machine-independent fashion by using the previously
discussed compile facility. Then, one can go back and
convert selected procedures to machine code for better
performance. As long as the parameter-passing interfaces
(i.e., the two stacks) are maintained, the rest of the code
need not be modified in the slightest.
The process of generating a machine-coded procedure

can, in fact, be much like that that of generating the com-
piler. Two procedures, often called CODE and END-
CODE, work similarly to: and ;, except that they do not
change the compile state. The PAP of the new entry
started by CODE points not to ENTER, but to the start of
the machine code to be produced; on exit, the machine
code that branches to NEXT is added. Between CODE
and END-CODE are operands and opcode mnemonics.
Actually, these are previously defined procedure names

that, when executed, produce the appropriate code. By
reversing the order of operands and opcodes, the operand
procedures can, at code generation time, leave on the
parameter stack information as to the type of operands to
be used. The opcode procedure can then use the informa-
tion immediately. This eliminates the need for syntactic

analysis. It also allows the programmer to perform ar-
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bitrary calculation at assembly time in support of the
assembly. This, again, is a macro-like capability.
As in the compile mode, it is possible to build in block-

structured procedures that automatically and directly
generate branch code. For most cases, this matches the
programmer's intent without requiring him to define
branch labels or branch instructions.

Figure 8 diagrams a sample assembly for a typical
microprocessor. For this machine, an entire assembler
can be written in as little as one page of source code.

Advanced concepts

Many implementations of threaded-code systems in-
clude features that do not follow directly from any of the
above discussions.

Vocabularies. The first of these features is the concept
of vocabularies. While the reader might have assumed
from previous discussion that the entire dictionary is
linked into a single (perhaps hashed) list, this need not be
the case. Collections of procedures that are part of an

overall function, such as assembling machine code, can be
separated from other procedures and given a name. This
name is that of a specialized vocabulary. Users are quite
free to build vocabularies for specialized applications
where, for example, the entire interface specification to
the eventual user is basically a description (names and
functions) of the procedures in that vocabulary. This is
similar to, although not as comprehensive as, the cap-
abilities found in large software systems and such modern
programming systems as DoD's Ada.
Another advantage of vocabularies is the high speed

and ease with which source text can be compiled. This per-
mits a programmer to keep the original source for spe-
cialized vocabularies on a cheap storage medium-like
disk-and read and compile it into the dictionary only
when needed. Support tools like linkage editors, loaders,
and relocators are not needed.

Screens. Another concept used in many implementa-
tions is that of a memory hierarchy based on units of
storage called screens, or blocks. Each unit is roughly
equivalent to the amount of information that can be
placed on a video display screen at one time. Many of
these units are available to the programmer; each has a

unique number. Although conceptually on disk, copies
can exist within storage buffers in main memory. These,
in turn, are managed like a cache, with references to the
slower backing medium made only when necessary. Both
text and data can be kept in these screens and accessed by
simply calling up a small set of procedures. For example,
the command 103 LOAD might compile the source code
on screen 103 into the current dictionary. Commands on

this screen might themselves direct compilation on yet
other screens, allowing hierarchies, vocabularies, and
libraries to be built up easily. Use of named constants per-

mits a symbolic reference to units such as ASSEMBLER
LOAD, where ASSEMBLER is a constant that returns

the appropriate screen number.

Reader Service Number 3 -

History

Although the idea of threaded code has been around
for a while, Charles F. Moore created nearly all the other
concepts discussed in this article. He first produced a

complete threaded-code system for real-time control of
telescopes at the Kitt Peak Observatory in the early
1970's. This system, and many of its successors was called
Forth, a foreshortening of Fourth for Fourth Generation
Computer. A version of Forth is a standard international
computer language for astronomers. Other major, but
separate, implementations include Stoic, IPS, and Snap.
Stoic has found use in hospital systems, IPS (developed in
Germany) in earth satellite control, and Snap in several
new hand-held computers.

Interest in such systems has increased dramatically
since the introduction of personal computers; implemen-
tations are available for almost any make. Standards
groups formed in the late 1970's are engaged in defining
systems that are consistent and compatible over a wide
range of hardware configurations. In the last two years, at
least three books and dozens of articles on the subject
have been published.

Interest in Forth developed more slowly in industry
than it did in academic and personal computing, but
seems to be picking up there, as well. Several groups, for
example, are developing initial support software for a
new military computer architecture and using such sys-
tems as a development tool. Others have found up to 80
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percent commonality between the ISA of threaded-code
systems and architectures like P-Code (a standard in-
termediate language for Pascal). This commonality per-
mits consideration of hardware designed to efficiently ex-
ecute either.

Conclusions

Threaded-code systems represent a synergistic com-
bination of techniques that are, by themselves, of limited
utility but together provide unique capabilities. Threaded
code, particularly indirect threaded code, provides
machine independence, portability, performance, and
extensibility. Stacks and reverse Polish notation yield
simplicity and the possibility of one-pass compilation.
The ability to define certain routines in the underlying
ISA provides performance when it is really needed and
easy handling of new or diverse 1/0 devices and
peripherals. Dictionaries and the text interpreter integrate
these features into a highly interactive programming
resource that the average programmer finds comprehen-
sible from top to bottom.

In a very real sense, threaded-code systems represent
neither a machine-level ISA nor a HOL and all the system
support that goes with it. Instead, they represent a bridge
between the two and give the programmer the features
and flexibility of either or both, in the combination that
best matches the application.
Although they are certainly not the ultimate or univer-

sal programming systems, threaded-code systems should
find a secure niche where small-to-moderate specialized
interactive application packages, real-time control of ex-
ternal devices and sensors, and engineering-type throw-
away code dominate. Examples include video games, test
equipment, distributed control systems, hardware
simulation packages, and specialized software and hard-
ware development tools. H
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